BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 33670072)

  • 1. Quantitative Evaluation of Burn Injuries Based on Electrical Impedance Spectroscopy of Blood with a Seven-Parameter Equivalent Circuit.
    Bao H; Li J; Wen J; Cheng L; Hu Y; Zhang Y; Wan N; Takei M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670072
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear relationship between cytoplasm resistance and hemoglobin in red blood cell hemolysis by electrical impedance spectroscopy & eight-parameter equivalent circuit.
    Tran AK; Sapkota A; Wen J; Li J; Takei M
    Biosens Bioelectron; 2018 Nov; 119():103-109. PubMed ID: 30118948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of electrical characteristics of biological tissue with electrical impedance spectroscopy.
    Yao J; Wang L; Liu K; Wu H; Wang H; Huang J; Li J
    Electrophoresis; 2020 Sep; 41(16-17):1425-1432. PubMed ID: 31863489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of lead exposure on blood electrical impedance spectroscopy of mice.
    Yang B; Xu J; Hu S; You B; Ma Q
    Biomed Eng Online; 2021 Oct; 20(1):99. PubMed ID: 34620171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Measurement and Evaluation of Red Blood Cell Aggregation in Normal Blood Based on a Modified Hanai Equation.
    Wen J; Wan N; Bao H; Li J
    Sensors (Basel); 2019 Mar; 19(5):. PubMed ID: 30836669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative detection and evaluation of thrombus formation based on electrical impedance spectroscopy.
    Li J; Wan N; Wen J; Cheng G; He L; Cheng L
    Biosens Bioelectron; 2019 Sep; 141():111437. PubMed ID: 31279177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Red blood cells aggregability measurement of coagulating blood in extracorporeal circulation system with multiple-frequency electrical impedance spectroscopy.
    Li J; Sapkota A; Kikuchi D; Sakota D; Maruyama O; Takei M
    Biosens Bioelectron; 2018 Jul; 112():79-85. PubMed ID: 29698811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectrophoretic and Electrical Impedance Differentiation of Cancerous Cells Based on Biophysical Phenotype.
    Turcan I; Caras I; Schreiner TG; Tucureanu C; Salageanu A; Vasile V; Avram M; Tincu B; Olariu MA
    Biosensors (Basel); 2021 Oct; 11(10):. PubMed ID: 34677357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrical impedance spectroscopy as electrical biopsy for monitoring radiation sequelae of intestine in rats.
    Chao PJ; Huang EY; Cheng KS; Huang YJ
    Biomed Res Int; 2013; 2013():974614. PubMed ID: 24093111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Impedance Spectroscopy of plant cells in aqueous biological buffer solutions and their modelling using a unified electrical equivalent circuit over a wide frequency range: 4Hz to 20 GHz.
    Kadan-Jamal K; Sophocleous M; Jog A; Desagani D; Teig-Sussholz O; Georgiou J; Avni A; Shacham-Diamand Y
    Biosens Bioelectron; 2020 Nov; 168():112485. PubMed ID: 32896772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recent Advances in Electrical Impedance Sensing Technology for Single-Cell Analysis.
    Zhang Z; Huang X; Liu K; Lan T; Wang Z; Zhu Z
    Biosensors (Basel); 2021 Nov; 11(11):. PubMed ID: 34821686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical Model for Blood Glucose Detection Using Electrical Impedance Spectroscopy.
    Pedro BG; Marcôndes DWC; Bertemes-Filho P
    Sensors (Basel); 2020 Dec; 20(23):. PubMed ID: 33291529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Electrical impedance spectroscopy for evaluation of the influence of simulated weightlessness on the electrical properties of rat blood].
    Gong Y; Chen L; Shen B; Ma Q
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Aug; 29(4):653-7, 662. PubMed ID: 23016410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The correlation between extracellular resistance by electrical biopsy and the ratio of optical low staining area in irradiated intestinal tissues of rats.
    Huang YJ; Huang EY; Cheng KS
    Biomed Eng Online; 2013 Mar; 12():23. PubMed ID: 23510292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrical biopsy of irradiated intestinal tissue with a simple electrical impedance spectroscopy system for radiation enteropathy in rats--a pilot study.
    Huang YJ; Huang EY; Lu YY; Chen CY; Cheng KS
    Physiol Meas; 2011 Sep; 32(9):1491-504. PubMed ID: 21813940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate Empirical Fractional-Order Electrical Models of Young and Old Dentines.
    Herencsar N; Kartci A; Cicekoglu O
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():2307-2310. PubMed ID: 33018469
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Efficiency Single-Cell Electrical Impedance Spectroscopy.
    Feng Y; Huang L; Zhao P; Liang F; Wang W
    Methods Mol Biol; 2023; 2644():81-97. PubMed ID: 37142917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparative Study of Two Fractional-Order Equivalent Electrical Circuits for Modeling the Electrical Impedance of Dental Tissues.
    Herencsar N; Freeborn TJ; Kartci A; Cicekoglu O
    Entropy (Basel); 2020 Oct; 22(10):. PubMed ID: 33286886
    [No Abstract]   [Full Text] [Related]  

  • 19. Evaluation of Electrical Impedance Spectroscopy-on-a-Needle as a Novel Tool to Determine Optimal Surgical Margin in Partial Nephrectomy.
    Kim HW; Yun J; Lee JZ; Shin DG; Lee JH
    Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28696572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigating Electrical Impedance Spectroscopy for Estimating Blood Flow-Induced Variations in Human Forearm.
    Anand G; Lowe A
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32957670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.