BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33670090)

  • 1. Exploring the Cold-Adaptation Mechanism of Serine Hydroxymethyltransferase by Comparative Molecular Dynamics Simulations.
    Zhang ZB; Xia YL; Dong GH; Fu YX; Liu SQ
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Serine hydroxymethyltransferase from the cold adapted microorganism Psychromonas ingrahamii: a low temperature active enzyme with broad substrate specificity.
    Angelaccio S; Florio R; Consalvi V; Festa G; Pascarella S
    Int J Mol Sci; 2012; 13(2):1314-1326. PubMed ID: 22408393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conformational transitions driven by pyridoxal-5'-phosphate uptake in the psychrophilic serine hydroxymethyltransferase from Psychromonas ingrahamii.
    Angelaccio S; Dworkowski F; Di Bello A; Milano T; Capitani G; Pascarella S
    Proteins; 2014 Oct; 82(10):2831-41. PubMed ID: 25044250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural adaptation of serine hydroxymethyltransferase to low temperatures.
    Siglioccolo A; Bossa F; Pascarella S
    Int J Biol Macromol; 2010 Jan; 46(1):37-46. PubMed ID: 19815026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frataxin from Psychromonas ingrahamii as a model to study stability modulation within the CyaY protein family.
    Roman EA; Faraj SE; Cousido-Siah A; Mitschler A; Podjarny A; Santos J
    Biochim Biophys Acta; 2013 Jun; 1834(6):1168-80. PubMed ID: 23429177
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate.
    Scarsdale JN; Radaev S; Kazanina G; Schirch V; Wright HT
    J Mol Biol; 2000 Feb; 296(1):155-68. PubMed ID: 10656824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flexibility and enzymatic cold-adaptation: a comparative molecular dynamics investigation of the elastase family.
    Papaleo E; Riccardi L; Villa C; Fantucci P; De Gioia L
    Biochim Biophys Acta; 2006 Aug; 1764(8):1397-406. PubMed ID: 16920043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved catalytic properties of a serine hydroxymethyl transferase from Idiomarina loihiensis by site directed mutagenesis.
    Kumar A; Wu G; Wu Z; Kumar N; Liu Z
    Int J Biol Macromol; 2018 Oct; 117():1216-1223. PubMed ID: 29727646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexibility of cold- and heat-adapted subtilisin-like serine proteinases evaluated with fluorescence quenching and molecular dynamics.
    Sigtryggsdóttir AR; Papaleo E; Thorbjarnardóttir SH; Kristjánsson MM
    Biochim Biophys Acta; 2014 Apr; 1844(4):705-12. PubMed ID: 24561657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural stability of the cofactor binding site in Escherichia coli serine hydroxymethyltransferase--the role of evolutionarily conserved hydrophobic contacts.
    Florio R; Chiaraluce R; Consalvi V; Paiardini A; Catacchio B; Bossa F; Contestabile R
    FEBS J; 2009 Dec; 276(24):7319-28. PubMed ID: 19909338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative thermal unfolding study of psychrophilic and mesophilic subtilisin-like serine proteases by molecular dynamics simulations.
    Du X; Sang P; Xia YL; Li Y; Liang J; Ai SM; Ji XL; Fu YX; Liu SQ
    J Biomol Struct Dyn; 2017 May; 35(7):1500-1517. PubMed ID: 27485684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of stability determinants of cold-adapted monomeric isocitrate dehydrogenase from a psychrophilic bacterium, Colwellia maris, by construction of chimeric enzymes.
    Watanabe S; Yasutake Y; Tanaka I; Takada Y
    Microbiology (Reading); 2005 Apr; 151(Pt 4):1083-1094. PubMed ID: 15817777
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of evolutionarily conserved hydrophobic contacts in the quaternary structure stability of Escherichia coli serine hydroxymethyltransferase.
    Florio R; Chiaraluce R; Consalvi V; Paiardini A; Catacchio B; Bossa F; Contestabile R
    FEBS J; 2009 Jan; 276(1):132-43. PubMed ID: 19019081
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of a conserved active site cation-pi interaction in Escherichia coli serine hydroxymethyltransferase.
    Vivoli M; Angelucci F; Ilari A; Morea V; Angelaccio S; di Salvo ML; Contestabile R
    Biochemistry; 2009 Dec; 48(50):12034-46. PubMed ID: 19883126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular cloning, characterization, and homology modeling of serine hydroxymethyltransferase from psychrophilic bacterium Psychrobacter sp.
    Wang Y; Wang Q; Hou Y; Wang Y
    J Basic Microbiol; 2022 Aug; 62(8):984-994. PubMed ID: 35762735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural determinants increasing flexibility confer cold adaptation in psychrophilic phosphoglycerate kinase.
    Mandelman D; Ballut L; Wolff DA; Feller G; Gerday C; Haser R; Aghajari N
    Extremophiles; 2019 Sep; 23(5):495-506. PubMed ID: 31147836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative molecular dynamics of mesophilic and psychrophilic protein homologues studied by 1.2 ns simulations.
    Brandsdal BO; Heimstad ES; Sylte I; Smalås AO
    J Biomol Struct Dyn; 1999 Dec; 17(3):493-506. PubMed ID: 10636084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring the molecular mechanism of cold-adaption of an alkaline protease mutant by molecular dynamics simulations and residue interaction network.
    Huang A; Lu F; Liu F
    Protein Sci; 2023 Dec; 32(12):e4837. PubMed ID: 37984374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differences in thermal structural changes and melting between mesophilic and thermophilic dihydrofolate reductase enzymes.
    Maffucci I; Laage D; Stirnemann G; Sterpone F
    Phys Chem Chem Phys; 2020 Sep; 22(33):18361-18373. PubMed ID: 32789320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Increased flexibility as a strategy for cold adaptation: a comparative molecular dynamics study of cold- and warm-active uracil DNA glycosylase.
    Olufsen M; Smalås AO; Moe E; Brandsdal BO
    J Biol Chem; 2005 May; 280(18):18042-8. PubMed ID: 15749696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.