These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 33670095)
1. Random-Walk Laplacian for Frequency Analysis in Periodic Graphs. Boukrab R; Pagès-Zamora A Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670095 [TBL] [Abstract][Full Text] [Related]
2. Random Walk Graph Laplacian-Based Smoothness Prior for Soft Decoding of JPEG Images. Liu X; Cheung G; Wu X; Zhao D IEEE Trans Image Process; 2017 Feb; 26(2):509-524. PubMed ID: 27849534 [TBL] [Abstract][Full Text] [Related]
3. A New Surrogating Algorithm by the Complex Graph Fourier Transform (CGFT). Belda J; Vergara L; Safont G; Salazar A; Parcheta Z Entropy (Basel); 2019 Aug; 21(8):. PubMed ID: 33267473 [TBL] [Abstract][Full Text] [Related]
4. Computing The Energy of Certain Graphs based on Vertex Status. Khurshid A; Salman M Curr Org Synth; 2023 Aug; ():. PubMed ID: 37581326 [TBL] [Abstract][Full Text] [Related]
5. A Local Structural Descriptor for Image Matching via Normalized Graph Laplacian Embedding. Tang J; Shao L; Li X; Lu K IEEE Trans Cybern; 2016 Feb; 46(2):410-20. PubMed ID: 25775504 [TBL] [Abstract][Full Text] [Related]
6. On the spectrum, energy and Laplacian energy of graphs with self-loops. Preetha P U; Suresh M; Bonyah E Heliyon; 2023 Jul; 9(7):e17001. PubMed ID: 37415950 [TBL] [Abstract][Full Text] [Related]
7. Remoteness and distance, distance (signless) Laplacian eigenvalues of a graph. Jia H; Song H J Inequal Appl; 2018; 2018(1):69. PubMed ID: 29628745 [TBL] [Abstract][Full Text] [Related]
8. A fast algorithm for vertex-frequency representations of signals on graphs. Jestrović I; Coyle JL; Sejdić E Signal Processing; 2017 Feb; 131():483-491. PubMed ID: 28479645 [TBL] [Abstract][Full Text] [Related]
9. Simple graph models of information spread in finite populations. Voorhees B; Ryder B R Soc Open Sci; 2015 May; 2(5):150028. PubMed ID: 26064661 [TBL] [Abstract][Full Text] [Related]
10. The exact Laplacian spectrum for the Dyson hierarchical network. Agliari E; Tavani F Sci Rep; 2017 Jan; 7():39962. PubMed ID: 28067261 [TBL] [Abstract][Full Text] [Related]
11. Toward the optimization of normalized graph Laplacian. Xie B; Wang M; Tao D IEEE Trans Neural Netw; 2011 Apr; 22(4):660-6. PubMed ID: 21356614 [TBL] [Abstract][Full Text] [Related]
12. Matched signal detection on graphs: Theory and application to brain imaging data classification. Hu C; Sepulcre J; Johnson KA; Fakhri GE; Lu YM; Li Q Neuroimage; 2016 Jan; 125():587-600. PubMed ID: 26481679 [TBL] [Abstract][Full Text] [Related]
13. A Random Walk Approach to Query Informative Constraints for Clustering. Abin AA IEEE Trans Cybern; 2018 Aug; 48(8):2272-2283. PubMed ID: 28796628 [TBL] [Abstract][Full Text] [Related]
14. Graph Matching Based on Stochastic Perturbation. Leng C; Xu W; Cheng I; Basu A IEEE Trans Image Process; 2015 Dec; 24(12):4862-75. PubMed ID: 26292343 [TBL] [Abstract][Full Text] [Related]
15. Graph-Based Transform for 2D Piecewise Smooth Signals With Random Discontinuity Locations. Zhang D; Liang J IEEE Trans Image Process; 2017 Apr; 26(4):1679-1693. PubMed ID: 28166494 [TBL] [Abstract][Full Text] [Related]
16. Laplacian Estrada and normalized Laplacian Estrada indices of evolving graphs. Shang Y PLoS One; 2015; 10(3):e0123426. PubMed ID: 25822506 [TBL] [Abstract][Full Text] [Related]
17. Graph Embedding Using Frequency Filtering. Bahonar H; Mirzaei A; Sadri S; Wilson RC IEEE Trans Pattern Anal Mach Intell; 2021 Feb; 43(2):473-484. PubMed ID: 31369368 [TBL] [Abstract][Full Text] [Related]
18. Novel graph distance matrix. Randić M; Pisanski T; Novic M; Plavsić D J Comput Chem; 2010 Jul; 31(9):1832-41. PubMed ID: 20301095 [TBL] [Abstract][Full Text] [Related]
19. Spectral clustering with epidemic diffusion. Smith LM; Lerman K; Garcia-Cardona C; Percus AG; Ghosh R Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042813. PubMed ID: 24229231 [TBL] [Abstract][Full Text] [Related]
20. One-Stage Shifted Laplacian Refining for Multiple Kernel Clustering. You J; Ren Z; Yu FR; You X IEEE Trans Neural Netw Learn Syst; 2024 Aug; 35(8):11501-11513. PubMed ID: 37030712 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]