These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 33670109)

  • 21. Photonic reinforcement learning based on optoelectronic reservoir computing.
    Kanno K; Uchida A
    Sci Rep; 2022 Mar; 12(1):3720. PubMed ID: 35260595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crowd-Aware Mobile Robot Navigation Based on Improved Decentralized Structured RNN via Deep Reinforcement Learning.
    Zhang Y; Feng Z
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850408
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Soft DAgger: Sample-Efficient Imitation Learning for Control of Soft Robots.
    Nazeer MS; Laschi C; Falotico E
    Sensors (Basel); 2023 Oct; 23(19):. PubMed ID: 37837107
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hardware Efficient Direct Policy Imitation Learning for Robotic Navigation in Resource-Constrained Settings.
    Sumanasena V; Fernando H; De Silva D; Thileepan B; Pasan A; Samarawickrama J; Osipov E; Alahakoon D
    Sensors (Basel); 2023 Dec; 24(1):. PubMed ID: 38203047
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A developmental roadmap for learning by imitation in robots.
    Lopes M; Santos-Victor J
    IEEE Trans Syst Man Cybern B Cybern; 2007 Apr; 37(2):308-21. PubMed ID: 17416159
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Deep imitation learning for 3D navigation tasks.
    Hussein A; Elyan E; Gaber MM; Jayne C
    Neural Comput Appl; 2018; 29(7):389-404. PubMed ID: 29576690
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human-robot skills transfer interfaces for a flexible surgical robot.
    Calinon S; Bruno D; Malekzadeh MS; Nanayakkara T; Caldwell DG
    Comput Methods Programs Biomed; 2014 Sep; 116(2):81-96. PubMed ID: 24491285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mobile robots exploration through cnn-based reinforcement learning.
    Tai L; Liu M
    Robotics Biomim; 2016; 3(1):24. PubMed ID: 28066702
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Goal-directed autonomous navigation of mobile robot based on the principle of neuromodulation.
    Wang D; Si W; Luo Y; Wang H; Ma T
    Network; 2019; 30(1-4):79-106. PubMed ID: 31564179
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deep Learning-Based Intelligent Robot in Sentencing.
    Chen X
    Front Psychol; 2022; 13():901796. PubMed ID: 35923731
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inverse kinematics solution and control method of 6-degree-of-freedom manipulator based on deep reinforcement learning.
    Zhao C; Wei Y; Xiao J; Sun Y; Zhang D; Guo Q; Yang J
    Sci Rep; 2024 May; 14(1):12467. PubMed ID: 38816531
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The BesMan Learning Platform for Automated Robot Skill Learning.
    Gutzeit L; Fabisch A; Otto M; Metzen JH; Hansen J; Kirchner F; Kirchner EA
    Front Robot AI; 2018; 5():43. PubMed ID: 33500929
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Path Planning of Mobile Robot by Neural Networks and Hierarchical Reinforcement Learning.
    Yu J; Su Y; Liao Y
    Front Neurorobot; 2020; 14():63. PubMed ID: 33132890
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dual-Arm Robot Trajectory Planning Based on Deep Reinforcement Learning under Complex Environment.
    Tang W; Cheng C; Ai H; Chen L
    Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joint elasticity produces energy efficiency in underwater locomotion: Verification with deep reinforcement learning.
    Zheng C; Li G; Hayashibe M
    Front Robot AI; 2022; 9():957931. PubMed ID: 36158602
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactive navigation under a fuzzy rules-based scheme and reinforcement learning for mobile robots.
    López-Lozada E; Rubio-Espino E; Sossa-Azuela JH; Ponce-Ponce VH
    PeerJ Comput Sci; 2021; 7():e556. PubMed ID: 34150998
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dexterous Manipulation for Multi-Fingered Robotic Hands With Reinforcement Learning: A Review.
    Yu C; Wang P
    Front Neurorobot; 2022; 16():861825. PubMed ID: 35548780
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of continuum robot arms under reinforcement learning and derived improvements.
    Morimoto R; Ikeda M; Niiyama R; Kuniyoshi Y
    Front Robot AI; 2022; 9():895388. PubMed ID: 36119726
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep reinforcement learning in continuous action space for autonomous robotic surgery.
    Shahkoo AA; Abin AA
    Int J Comput Assist Radiol Surg; 2023 Mar; 18(3):423-431. PubMed ID: 36383302
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.