These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 33670122)

  • 1. Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications.
    Hassan RYA; Febbraio F; Andreescu S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670122
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing.
    Zou L; Huang YH; Long ZE; Qiao Y
    World J Microbiol Biotechnol; 2018 Dec; 35(1):9. PubMed ID: 30569420
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces.
    Wang R; Li H; Sun J; Zhang L; Jiao J; Wang Q; Liu S
    Adv Mater; 2021 Feb; 33(6):e2004051. PubMed ID: 33325567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent advances in the development and utilization of modern anode materials for high performance microbial fuel cells.
    Sonawane JM; Yadav A; Ghosh PC; Adeloju SB
    Biosens Bioelectron; 2017 Apr; 90():558-576. PubMed ID: 27825877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Living electrochemical biosensing: Engineered electroactive bacteria for biosensor development and the emerging trends.
    Zhu J; Wang B; Zhang Y; Wei T; Gao T
    Biosens Bioelectron; 2023 Oct; 237():115480. PubMed ID: 37379794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progress and Insights in the Application of MXenes as New 2D Nano-Materials Suitable for Biosensors and Biofuel Cell Design.
    Ramanavicius S; Ramanavicius A
    Int J Mol Sci; 2020 Dec; 21(23):. PubMed ID: 33287304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional Nanomaterial-Modified Anodes in Microbial Fuel Cells: Advances and Perspectives.
    Jiang YJ; Hui S; Jiang LP; Zhu JJ
    Chemistry; 2023 Jan; 29(1):e202202002. PubMed ID: 36161734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microbial fuel cells: novel microbial physiologies and engineering approaches.
    Lovley DR
    Curr Opin Biotechnol; 2006 Jun; 17(3):327-32. PubMed ID: 16679010
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent Progress of Nanostructure Modified Anodes in Microbial Fuel Cells.
    Kim M; Kim HW; Nam JY; In SI
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6891-9. PubMed ID: 26716261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial electrochemical technologies: Electronic circuitry and characterization tools.
    Sánchez C; Dessì P; Duffy M; Lens PNL
    Biosens Bioelectron; 2020 Feb; 150():111884. PubMed ID: 31780409
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for improving the electroactivity and specific metabolic functionality of microorganisms for various microbial electrochemical technologies.
    Chiranjeevi P; Patil SA
    Biotechnol Adv; 2020; 39():107468. PubMed ID: 31707076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities.
    Caizán-Juanarena L; Borsje C; Sleutels T; Yntema D; Santoro C; Ieropoulos I; Soavi F; Ter Heijne A
    Biotechnol Adv; 2020; 39():107456. PubMed ID: 31618667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in interfacial engineering for enhanced microbial extracellular electron transfer.
    Wang YX; Hou N; Liu XL; Mu Y
    Bioresour Technol; 2022 Feb; 345():126562. PubMed ID: 34910968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Industrial bioelectrochemistry for waste valorization: State of the art and challenges.
    Maureira D; Romero O; Illanes A; Wilson L; Ottone C
    Biotechnol Adv; 2023; 64():108123. PubMed ID: 36868391
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Progress in enhancing electron transfer rate between exoelectrogenic microorganisms and electrode interface].
    Liu X; Zhang J; Zhang B; Yang C; Li F; Song H
    Sheng Wu Gong Cheng Xue Bao; 2021 Feb; 37(2):361-377. PubMed ID: 33645140
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An electrochemical system for the rapid and accurate quantitation of microbial exoelectrogenic ability.
    Wang H; Zheng Y; Liu J; Zhu B; Qin W; Zhao F
    Biosens Bioelectron; 2022 Nov; 215():114584. PubMed ID: 35981448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capturing the signal of weak electricigens: a worthy endeavour.
    Aiyer K; Doyle LE
    Trends Biotechnol; 2022 May; 40(5):564-575. PubMed ID: 34696916
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive review of microbial electrochemical systems as a platform technology.
    Wang H; Ren ZJ
    Biotechnol Adv; 2013 Dec; 31(8):1796-807. PubMed ID: 24113213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extremophilic electroactive microorganisms: Promising biocatalysts for bioprocessing applications.
    Chaudhary S; Yadav S; Singh R; Sadhotra C; Patil SA
    Bioresour Technol; 2022 Mar; 347():126663. PubMed ID: 35017088
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbiome involved in microbial electrochemical systems (MESs): A review.
    Saratale RG; Saratale GD; Pugazhendhi A; Zhen G; Kumar G; Kadier A; Sivagurunathan P
    Chemosphere; 2017 Jun; 177():176-188. PubMed ID: 28288426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.