These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 33670257)

  • 21. Online Gait Learning for Modular Robots with Arbitrary Shapes and Sizes.
    Weel B; D'Angelo M; Haasdijk E; Eiben AE
    Artif Life; 2017; 23(1):80-104. PubMed ID: 28140628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactive robots in experimental biology.
    Krause J; Winfield AF; Deneubourg JL
    Trends Ecol Evol; 2011 Jul; 26(7):369-75. PubMed ID: 21496942
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Research on deep reinforcement learning basketball robot shooting skills improvement based on end to end architecture and multi-modal perception.
    Zhang J; Tao D
    Front Neurorobot; 2023; 17():1274543. PubMed ID: 37908406
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An adaptive reinforcement learning-based multimodal data fusion framework for human-robot confrontation gaming.
    Qi W; Fan H; Karimi HR; Su H
    Neural Netw; 2023 Jul; 164():489-496. PubMed ID: 37201309
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Framework and Algorithm for Human-Robot Collaboration Based on Multimodal Reinforcement Learning.
    Cai Z; Feng Z; Zhou L; Ai C; Shao H; Yang X
    Comput Intell Neurosci; 2022; 2022():2341898. PubMed ID: 36210974
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Velocity range-based reward shaping technique for effective map-less navigation with LiDAR sensor and deep reinforcement learning.
    Lee H; Jeong J
    Front Neurorobot; 2023; 17():1210442. PubMed ID: 37744086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reinforcement-Learning-Based Route Generation for Heavy-Traffic Autonomous Mobile Robot Systems.
    Kozjek D; Malus A; Vrabič R
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300548
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Memristive device based learning for navigation in robots.
    Sarim M; Kumar M; Jha R; Minai AA
    Bioinspir Biomim; 2017 Nov; 12(6):066011. PubMed ID: 28696337
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Finding intrinsic rewards by embodied evolution and constrained reinforcement learning.
    Uchibe E; Doya K
    Neural Netw; 2008 Dec; 21(10):1447-55. PubMed ID: 19013054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Experiments in artificial culture: from noisy imitation to storytelling robots.
    Winfield AFT; Blackmore S
    Philos Trans R Soc Lond B Biol Sci; 2022 Jan; 377(1843):20200323. PubMed ID: 34894733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Modular deep reinforcement learning from reward and punishment for robot navigation.
    Wang J; Elfwing S; Uchibe E
    Neural Netw; 2021 Mar; 135():115-126. PubMed ID: 33383526
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Autonomous learning based on cost assumptions: theoretical studies and experiments in robot control.
    Ribeiro CH; Hemerly EM
    Int J Neural Syst; 1999 Jun; 9(3):243-9. PubMed ID: 10560764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Learning to reach by reinforcement learning using a receptive field based function approximation approach with continuous actions.
    Tamosiunaite M; Asfour T; Wörgötter F
    Biol Cybern; 2009 Mar; 100(3):249-60. PubMed ID: 19229556
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Teaching NICO How to Grasp: An Empirical Study on Crossmodal Social Interaction as a Key Factor for Robots Learning From Humans.
    Kerzel M; Pekarek-Rosin T; Strahl E; Heinrich S; Wermter S
    Front Neurorobot; 2020; 14():28. PubMed ID: 32581759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Deep Deterministic Policy Gradient-Based Autonomous Driving for Mobile Robots in Sparse Reward Environments.
    Park M; Lee SY; Hong JS; Kwon NK
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36559941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improved Robot Path Planning Method Based on Deep Reinforcement Learning.
    Han H; Wang J; Kuang L; Han X; Xue H
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420785
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Survey of Sim-to-Real Transfer Techniques Applied to Reinforcement Learning for Bioinspired Robots.
    Zhu W; Guo X; Owaki D; Kutsuzawa K; Hayashibe M
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3444-3459. PubMed ID: 34587101
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Tactile Ethics of Soft Robotics: Designing Wisely for Human-Robot Interaction.
    Arnold T; Scheutz M
    Soft Robot; 2017 Jun; 4(2):81-87. PubMed ID: 29182090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multi-Channel Interactive Reinforcement Learning for Sequential Tasks.
    Koert D; Kircher M; Salikutluk V; D'Eramo C; Peters J
    Front Robot AI; 2020; 7():97. PubMed ID: 33501264
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient exploration through active learning for value function approximation in reinforcement learning.
    Akiyama T; Hachiya H; Sugiyama M
    Neural Netw; 2010 Jun; 23(5):639-48. PubMed ID: 20080026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.