These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 33670257)

  • 41. Efficient exploration through active learning for value function approximation in reinforcement learning.
    Akiyama T; Hachiya H; Sugiyama M
    Neural Netw; 2010 Jun; 23(5):639-48. PubMed ID: 20080026
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Off-line simulation inspires insight: A neurodynamics approach to efficient robot task learning.
    Sousa E; Erlhagen W; Ferreira F; Bicho E
    Neural Netw; 2015 Dec; 72():123-39. PubMed ID: 26548945
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A soft artificial muscle driven robot with reinforcement learning.
    Yang T; Xiao Y; Zhang Z; Liang Y; Li G; Zhang M; Li S; Wong TW; Wang Y; Li T; Huang Z
    Sci Rep; 2018 Sep; 8(1):14518. PubMed ID: 30266999
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction.
    de Greeff J; Belpaeme T
    PLoS One; 2015; 10(9):e0138061. PubMed ID: 26422143
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Towards a Broad-Persistent Advising Approach for Deep Interactive Reinforcement Learning in Robotic Environments.
    Nguyen HS; Cruz F; Dazeley R
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36904885
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Robot-assisted motor training: assistance decreases exploration during reinforcement learning.
    Sans-Muntadas A; Duarte JE; Reinkensmeyer DJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3516-20. PubMed ID: 25570749
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Energy-efficient and damage-recovery slithering gait design for a snake-like robot based on reinforcement learning and inverse reinforcement learning.
    Bing Z; Lemke C; Cheng L; Huang K; Knoll A
    Neural Netw; 2020 Sep; 129():323-333. PubMed ID: 32593929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient multitask learning with an embodied predictive model for door opening and entry with whole-body control.
    Ito H; Yamamoto K; Mori H; Ogata T
    Sci Robot; 2022 Apr; 7(65):eaax8177. PubMed ID: 35385295
    [TBL] [Abstract][Full Text] [Related]  

  • 49. MOSAIC for multiple-reward environments.
    Sugimoto N; Haruno M; Doya K; Kawato M
    Neural Comput; 2012 Mar; 24(3):577-606. PubMed ID: 22168558
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robots for use in autism research.
    Scassellati B; Admoni H; Matarić M
    Annu Rev Biomed Eng; 2012; 14():275-94. PubMed ID: 22577778
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A review of abstract concept learning in embodied agents and robots.
    Cangelosi A; Stramandinoli F
    Philos Trans R Soc Lond B Biol Sci; 2018 Aug; 373(1752):. PubMed ID: 29914999
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modelling Multimodal Dialogues for Social Robots Using Communicative Acts.
    Fernández-Rodicio E; Castro-González Á; Alonso-Martín F; Maroto-Gómez M; Salichs MÁ
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32570807
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Model learning for robot control: a survey.
    Nguyen-Tuong D; Peters J
    Cogn Process; 2011 Nov; 12(4):319-40. PubMed ID: 21487784
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The ITALK project: a developmental robotics approach to the study of individual, social, and linguistic learning.
    Broz F; Nehaniv CL; Belpaeme T; Bisio A; Dautenhahn K; Fadiga L; Ferrauto T; Fischer K; Förster F; Gigliotta O; Griffiths S; Lehmann H; Lohan KS; Lyon C; Marocco D; Massera G; Metta G; Mohan V; Morse A; Nolfi S; Nori F; Peniak M; Pitsch K; Rohlfing KJ; Sagerer G; Sato Y; Saunders J; Schillingmann L; Sciutti A; Tikhanoff V; Wrede B; Zeschel A; Cangelosi A
    Top Cogn Sci; 2014 Jul; 6(3):534-44. PubMed ID: 24934294
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functional Contour-following via Haptic Perception and Reinforcement Learning.
    Hellman RB; Tekin C; van der Schaar M; Santos VJ
    IEEE Trans Haptics; 2018; 11(1):61-72. PubMed ID: 28922126
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Communication and knowledge sharing in human-robot interaction and learning from demonstration.
    Koenig N; Takayama L; Matarić M
    Neural Netw; 2010; 23(8-9):1104-12. PubMed ID: 20598503
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Importance of Parameter Settings on the Benefits of Robot-to-Robot Learning in Evolutionary Robotics.
    Heinerman J; Haasdijk E; Eiben AE
    Front Robot AI; 2019; 6():10. PubMed ID: 33501027
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Socially intelligent robots: dimensions of human-robot interaction.
    Dautenhahn K
    Philos Trans R Soc Lond B Biol Sci; 2007 Apr; 362(1480):679-704. PubMed ID: 17301026
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient reinforcement learning: computational theories, neuroscience and robotics.
    Kawato M; Samejima K
    Curr Opin Neurobiol; 2007 Apr; 17(2):205-12. PubMed ID: 17374483
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reinforcement Learning for Mobile Robotics Exploration: A Survey.
    Garaffa LC; Basso M; Konzen AA; de Freitas EP
    IEEE Trans Neural Netw Learn Syst; 2023 Aug; 34(8):3796-3810. PubMed ID: 34767514
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.