These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 33670430)
1. The Thermal Behavior of Lyocell Fibers Containing Bis(trimethylsilyl)acetylene. Makarov I; Vinogradov M; Mironova M; Shandryuk G; Golubev Y; Berkovich A Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33670430 [TBL] [Abstract][Full Text] [Related]
2. Preparation and Characterization of Carbon Fibers from Lyocell Precursors Grafted with Polyacrylamide via Electron-Beam Irradiation. Kim HG; Kim YS; Kuk YS; Kwac LK; Choi SH; Park J; Shin HK Molecules; 2021 Apr; 26(9):. PubMed ID: 33922535 [TBL] [Abstract][Full Text] [Related]
3. Transformation of Specific Dispersion Interactions between Cellulose and Polyacrylonitrile in Solutions into Covalent Interactions in Fibers. Vinogradov MI; Golova LK; Makarov IS; Bondarenko GN; Levin IS; Arkharova NA; Kulichikhin VG Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687536 [TBL] [Abstract][Full Text] [Related]
4. Influence of Oxygen Uptake on Pitch Carbon Fiber. Harrell TM; Scherschel A; Love-Baker C; Tucker A; Moskowitz JD; Li X Small; 2023 Nov; 19(45):e2303527. PubMed ID: 37420324 [TBL] [Abstract][Full Text] [Related]
5. Production process of a new cellulosic fiber with antimicrobial properties. Zikeli S Curr Probl Dermatol; 2006; 33():110-26. PubMed ID: 16766884 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of electrospun polyacrylonitrile- derived carbon fibers and comparison of properties with bulk form. Alarifi IM; Khan WS; Asmatulu R PLoS One; 2018; 13(8):e0201345. PubMed ID: 30091992 [TBL] [Abstract][Full Text] [Related]
7. A Novel Acetylene-Functional/Silicon-Containing Benzoxazine Resin: Preparation, Curing Kinetics and Thermal Properties. Mei Q; Wang H; Tong D; Song J; Huang Z Polymers (Basel); 2020 Apr; 12(5):. PubMed ID: 32357390 [TBL] [Abstract][Full Text] [Related]
8. Solvent Regulation Approach for Preparing Cellulose-Nanocrystal-Reinforced Regenerated Cellulose Fibers and Their Properties. Jiang Z; Tang L; Gao X; Zhang W; Ma J; Zhang L ACS Omega; 2019 Jan; 4(1):2001-2008. PubMed ID: 31459451 [TBL] [Abstract][Full Text] [Related]
9. Regenerated cellulose-silk fibroin blends fibers. Marsano E; Corsini P; Canetti M; Freddi G Int J Biol Macromol; 2008 Aug; 43(2):106-14. PubMed ID: 18513793 [TBL] [Abstract][Full Text] [Related]
10. Thermal, Electrical and Surface Hydrophobic Properties of Electrospun Polyacrylonitrile Nanofibers for Structural Health Monitoring. Alarifi IM; Alharbi A; Khan WS; Swindle A; Asmatulu R Materials (Basel); 2015 Oct; 8(10):7017-7031. PubMed ID: 28793615 [TBL] [Abstract][Full Text] [Related]
11. Effect of the Ionic Liquid Structure on the Melt Processability of Polyacrylonitrile Fibers. Martin HJ; Luo H; Chen H; Do-Thanh CL; Kearney LT; Mayes R; Naskar AK; Dai S ACS Appl Mater Interfaces; 2020 Feb; 12(7):8663-8673. PubMed ID: 31977177 [TBL] [Abstract][Full Text] [Related]
12. Polyacrylonitrile-based carbonized fibers and metal-carbonized fiber nanocomposites for thermal transport. Ochanda F; Atkinson A; Fey EO; Andala D; Jones WE J Nanosci Nanotechnol; 2010 Dec; 10(12):8062-71. PubMed ID: 21121297 [TBL] [Abstract][Full Text] [Related]
13. Hydrogenation of titanocene and zirconocene bis(trimethylsilyl)acetylene complexes. Pinkas J; Gyepes R; Císařová I; Kubišta J; Horáček M; Žilková N; Mach K Dalton Trans; 2018 Jul; 47(27):8921-8932. PubMed ID: 29916518 [TBL] [Abstract][Full Text] [Related]
14. Enhanced mechanical and thermal properties of regenerated cellulose/graphene composite fibers. Tian M; Qu L; Zhang X; Zhang K; Zhu S; Guo X; Han G; Tang X; Sun Y Carbohydr Polym; 2014 Oct; 111():456-62. PubMed ID: 25037375 [TBL] [Abstract][Full Text] [Related]
15. Mechanical, Microstructure and Surface Characterizations of Carbon Fibers Prepared from Cellulose after Liquefying and Curing. Ma X; Yuan C; Liu X Materials (Basel); 2013 Dec; 7(1):75-84. PubMed ID: 28788441 [TBL] [Abstract][Full Text] [Related]
16. Renewable resource-based green composites from recycled cellulose fiber and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) bioplastic. Bhardwaj R; Mohanty AK; Drzal LT; Pourboghrat F; Misra M Biomacromolecules; 2006 Jun; 7(6):2044-51. PubMed ID: 16768432 [TBL] [Abstract][Full Text] [Related]
17. Thermal Analysis and Crystal Structure of Poly(Acrylonitrile-Co-Itaconic Acid) Copolymers Synthesized in Water. Zhang H; Quan L; Gao A; Tong Y; Shi F; Xu L Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31963164 [TBL] [Abstract][Full Text] [Related]
18. Structural Transformation of Polyacrylonitrile (PAN) Fibers during Rapid Thermal Pretreatment in Nitrogen Atmosphere. Dang W; Liu J; Wang X; Yan K; Zhang A; Yang J; Chen L; Liang J Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31906379 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive study on the effect of carbonization temperature on the physical and chemical properties of carbon fibers. Shokrani Havigh R; Mahmoudi Chenari H Sci Rep; 2022 Jun; 12(1):10704. PubMed ID: 35739235 [TBL] [Abstract][Full Text] [Related]
20. Flexible carbonized cellulose/single-walled carbon nanotube films with high conductivity. Hwang HC; Woo JS; Park SY Carbohydr Polym; 2018 Sep; 196():168-175. PubMed ID: 29891284 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]