These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. CO Ogo A; Okayama S; Nakatani M; Hashimoto M Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144013 [TBL] [Abstract][Full Text] [Related]
8. A polymeric master replication technology for mass fabrication of poly(dimethylsiloxane) microfluidic devices. Li HF; Lin JM; Su RG; Cai ZW; Uchiyama K Electrophoresis; 2005 May; 26(9):1825-33. PubMed ID: 15812838 [TBL] [Abstract][Full Text] [Related]
9. Micro-molding for poly(dimethylsiloxane) microchips. García CD; Henry CS Methods Mol Biol; 2006; 339():27-36. PubMed ID: 16790864 [TBL] [Abstract][Full Text] [Related]
10. High-fidelity patch-clamp recordings from neurons cultured on a polymer microchip. Martinez D; Py C; Denhoff MW; Martina M; Monette R; Comas T; Luk C; Syed N; Mealing G Biomed Microdevices; 2010 Dec; 12(6):977-85. PubMed ID: 20694518 [TBL] [Abstract][Full Text] [Related]
11. Rapid and inexpensive method for the simple fabrication of PDMS-based electrochemical sensors for detection in microfluidic devices. da Silva ENT; Ferreira VS; Lucca BG Electrophoresis; 2019 May; 40(9):1322-1330. PubMed ID: 30657598 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and Characterization of All-Polystyrene Microfluidic Devices with Integrated Electrodes and Tubing. Pentecost AM; Martin RS Anal Methods; 2015; 7(7):2968-2976. PubMed ID: 28191042 [TBL] [Abstract][Full Text] [Related]
13. Rapid, high-quality microfabrication of thermoset polymer PDMS using laser-induced bubbles. Naruse T; Hanada Y Opt Express; 2019 Apr; 27(7):9429-9438. PubMed ID: 31045094 [TBL] [Abstract][Full Text] [Related]
14. A practical guide to rapid-prototyping of PDMS-based microfluidic devices: A tutorial. Morbioli GG; Speller NC; Stockton AM Anal Chim Acta; 2020 Oct; 1135():150-174. PubMed ID: 33070852 [TBL] [Abstract][Full Text] [Related]
15. New perspectives for direct PDMS microfabrication using a CD-DVD laser. Hautefeuille M; Cabriales L; Pimentel-Domínguez R; Velázquez V; Hernández-Cordero J; Oropeza-Ramos L; Rivera M; Carreón-Castro MP; Grether M; López-Moreno E Lab Chip; 2013 Dec; 13(24):4848-54. PubMed ID: 24172647 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and laser patterning of polystyrene optical oxygen sensor films for lab-on-a-chip applications. Grist SM; Oyunerdene N; Flueckiger J; Kim J; Wong PC; Chrostowski L; Cheung KC Analyst; 2014 Nov; 139(22):5718-27. PubMed ID: 25230092 [TBL] [Abstract][Full Text] [Related]
17. Generation of hydrophilic poly(dimethylsiloxane) for high-performance microchip electrophoresis. Vickers JA; Caulum MM; Henry CS Anal Chem; 2006 Nov; 78(21):7446-52. PubMed ID: 17073411 [TBL] [Abstract][Full Text] [Related]
18. Simple approach for the fabrication of screen-printed carbon-based electrode for amperometric detection on microchip electrophoresis. Petroni JM; Lucca BG; Ferreira VS Anal Chim Acta; 2017 Feb; 954():88-96. PubMed ID: 28081818 [TBL] [Abstract][Full Text] [Related]
19. Self-cleaning poly(dimethylsiloxane) film with functional micro/nano hierarchical structures. Zhang XS; Zhu FY; Han MD; Sun XM; Peng XH; Zhang HX Langmuir; 2013 Aug; 29(34):10769-75. PubMed ID: 23906343 [TBL] [Abstract][Full Text] [Related]
20. Rapid fabrication of poly(dimethylsiloxane)-based microchip capillary electrophoresis devices using CO2 laser ablation. Fogarty BA; Heppert KE; Cory TJ; Hulbutta KR; Martin RS; Lunte SM Analyst; 2005 Jun; 130(6):924-30. PubMed ID: 15912242 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]