These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 33670498)
1. Accelerometry-Enhanced Magnetic Sensor for Intra-Oral Continuous Jaw Motion Tracking. Jucevičius M; Ožiūnas R; Mažeika M; Marozas V; Jegelevičius D Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670498 [TBL] [Abstract][Full Text] [Related]
2. Permanent Magnet Tracking Method Resistant to Background Magnetic Field for Assessing Jaw Movement in Wearable Devices. Jucevičius M; Ožiūnas R; Narvydas G; Jegelevičius D Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161716 [TBL] [Abstract][Full Text] [Related]
3. A New Intraoral Six-Degrees-of-Freedom Jaw Movement Tracking Method Using Magnetic Fingerprints. Morikawa K; Isogai R; Nonaka J; Yoshida Y; Haga S; Maki K Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433520 [TBL] [Abstract][Full Text] [Related]
4. Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible. Moriuchi E; Hamanaka R; Koga Y; Fujishita A; Yoshimi T; Yasuda G; Kohara H; Yoshida N Biomed Eng Online; 2019 May; 18(1):59. PubMed ID: 31096969 [TBL] [Abstract][Full Text] [Related]
5. Estimation of ground reaction forces and ankle moment with multiple, low-cost sensors. Jacobs DA; Ferris DP J Neuroeng Rehabil; 2015 Oct; 12():90. PubMed ID: 26467753 [TBL] [Abstract][Full Text] [Related]
6. Application-Based Production and Testing of a Core-Sheath Fiber Strain Sensor for Wearable Electronics: Feasibility Study of Using the Sensors in Measuring Tri-Axial Trunk Motion Angles. Rezaei A; Cuthbert TJ; Gholami M; Menon C Sensors (Basel); 2019 Oct; 19(19):. PubMed ID: 31623321 [TBL] [Abstract][Full Text] [Related]
7. Development of a three-dimensional jaw-tracking system implanted in the freely moving mouse. Koga Y; Yoshida N; Kobayashi K; Ichiro Okayasu ; Yamada Y Med Eng Phys; 2001 Apr; 23(3):201-6. PubMed ID: 11410385 [TBL] [Abstract][Full Text] [Related]
8. Spatial and rotational quality assurance of 6DOF patient tracking systems. Belcher AH; Liu X; Grelewicz Z; Wiersma RD Med Phys; 2016 Jun; 43(6):2785-2793. PubMed ID: 27277026 [TBL] [Abstract][Full Text] [Related]
9. Inertial and time-of-arrival ranging sensor fusion. Vasilyev P; Pearson S; El-Gohary M; Aboy M; McNames J Gait Posture; 2017 May; 54():1-7. PubMed ID: 28242567 [TBL] [Abstract][Full Text] [Related]
10. Measurement of masticatory movement by a new jaw tracking system using a home digital camcorder. Kinuta S; Wakabayashi K; Sohmura T; Kojima T; Mizumori T; Nakamura T; Takahashi J; Yatani H Dent Mater J; 2005 Dec; 24(4):661-6. PubMed ID: 16445032 [TBL] [Abstract][Full Text] [Related]
11. [Application of a jaw motion tracking device that measures six degrees of freedom using optoelectronic]. Ogawa T; Shigeta Y; Ando E; Hirai S; Suma M; Hirabayashi R; Ikawa T; Hosoda Y; Araki J; Itoh K; Kamei S; Fukushima S; Moriyama T; Saito I; Kumeda H Nihon Hotetsu Shika Gakkai Zasshi; 2006 Apr; 50(2):210-8. PubMed ID: 16790960 [TBL] [Abstract][Full Text] [Related]
12. The effect of experimental balancing interferences on masticatory performance. Eberhard L; Braun S; Wirth A; Schindler HJ; Hellmann D; Giannakopoulos NN J Oral Rehabil; 2014 May; 41(5):346-52. PubMed ID: 24843864 [TBL] [Abstract][Full Text] [Related]
13. Inertial Sensors in Swimming: Detection of Stroke Phases through 3D Wrist Trajectory. Cortesi M; Giovanardi A; Gatta G; Mangia AL; Bartolomei S; Fantozzi S J Sports Sci Med; 2019 Sep; 18(3):438-447. PubMed ID: 31427865 [TBL] [Abstract][Full Text] [Related]
14. Improved single- and multi-contact life-time testing of dental restorative materials using key characteristics of the human masticatory system and a force/position-controlled robotic dental wear simulator. Raabe D; Harrison A; Ireland A; Alemzadeh K; Sandy J; Dogramadzi S; Melhuish C; Burgess S Bioinspir Biomim; 2012 Mar; 7(1):016002. PubMed ID: 22155971 [TBL] [Abstract][Full Text] [Related]
15. Kinematic Model-Based Pedestrian Dead Reckoning for Heading Correction and Lower Body Motion Tracking. Lee MS; Ju H; Song JW; Park CG Sensors (Basel); 2015 Nov; 15(11):28129-53. PubMed ID: 26561814 [TBL] [Abstract][Full Text] [Related]
16. Development of a Wearable Mouth Guard Device for Monitoring Teeth Clenching during Exercise. Kinjo R; Wada T; Churei H; Ohmi T; Hayashi K; Yagishita K; Uo M; Ueno T Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671506 [TBL] [Abstract][Full Text] [Related]
17. Opportunities for measuring wheelchair kinematics in match settings; reliability of a three inertial sensor configuration. van der Slikke RM; Berger MA; Bregman DJ; Lagerberg AH; Veeger HE J Biomech; 2015 Sep; 48(12):3398-405. PubMed ID: 26141162 [TBL] [Abstract][Full Text] [Related]
19. A flexible wearable sensor for knee flexion assessment during gait. Papi E; Bo YN; McGregor AH Gait Posture; 2018 May; 62():480-483. PubMed ID: 29674288 [TBL] [Abstract][Full Text] [Related]
20. Mandibular movement trajectories and masticatory muscle activities in the rabbit in the sleep and wake states. Yamada Y; Uchida K; Sato T Dent Jpn (Tokyo); 1990; 27(1):35-9. PubMed ID: 2099289 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]