These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 33670580)

  • 1. MicroRNAs and Long Non-Coding RNAs as Potential Candidates to Target Specific Motifs of SARS-CoV-2.
    Natarelli L; Parca L; Mazza T; Weber C; Virgili F; Fratantonio D
    Noncoding RNA; 2021 Feb; 7(1):. PubMed ID: 33670580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging role of microRNAs and long non-coding RNAs in COVID-19 with implications to therapeutics.
    Arman K; Dalloul Z; Bozgeyik E
    Gene; 2023 Apr; 861():147232. PubMed ID: 36736508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new insight into sex-specific non-coding RNAs and networks in response to SARS-CoV-2.
    Askari N; Hadizadeh M; Rashidifar M
    Infect Genet Evol; 2022 Jan; 97():105195. PubMed ID: 34954105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SARS-CoV infection crosstalk with human host cell noncoding-RNA machinery: An in-silico approach.
    Yousefi H; Poursheikhani A; Bahmanpour Z; Vatanmakanian M; Taheri M; Mashouri L; Alahari SK
    Biomed Pharmacother; 2020 Oct; 130():110548. PubMed ID: 33475497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5'UTR of SARS-CoV-2.
    Baldassarre A; Paolini A; Bruno SP; Felli C; Tozzi AE; Masotti A
    Epigenomics; 2020 Aug; 12(15):1349-1361. PubMed ID: 32875809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular microRNAs target SARS-CoV-2 spike protein and restrict viral replication.
    Vaddadi K; Gandikota C; Huang C; Liang Y; Liu L
    Am J Physiol Cell Physiol; 2023 Aug; 325(2):C420-C428. PubMed ID: 37399496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. miRCOVID-19: Potential Targets of Human miRNAs in SARS-CoV-2 for RNA-Based Drug Discovery.
    Alam T; Lipovich L
    Noncoding RNA; 2021 Mar; 7(1):. PubMed ID: 33801496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of lncRNAs and miRNAs in SARS-CoV-2 infection.
    Lin Y; Sun Q; Zhang B; Zhao W; Shen C
    Front Cell Dev Biol; 2023; 11():1229393. PubMed ID: 37576600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of microRNAs in modulating SARS-CoV-2 infection in human cells: a systematic review.
    Marchi R; Sugita B; Centa A; Fonseca AS; Bortoletto S; Fiorentin K; Ferreira S; Cavalli LR
    Infect Genet Evol; 2021 Jul; 91():104832. PubMed ID: 33812037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNAs in the development of potential therapeutic targets against COVID-19: A narrative review.
    Ahmed JQ; Maulud SQ; Dhawan M; Priyanka ; Choudhary OP; Jalal PJ; Ali RK; Tayib GA; Hasan DA
    J Infect Public Health; 2022 Jul; 15(7):788-799. PubMed ID: 35751930
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interplay between lncRNAs, RNA-binding proteins and viral genome during SARS-CoV-2 infection reveals strong connections with regulatory events involved in RNA metabolism and immune response.
    Enguita FJ; Leitão AL; McDonald JT; Zaksas V; Das S; Galeano D; Taylor D; Wurtele ES; Saravia-Butler A; Baylin SB; Meller R; Porterfield DM; Wallace DC; Schisler JC; Mason CE; Beheshti A
    Theranostics; 2022; 12(8):3946-3962. PubMed ID: 35664076
    [No Abstract]   [Full Text] [Related]  

  • 12.
    Baig MS; Deepanshu ; Prakash P; Alam P; Krishnan A
    J Biomol Struct Dyn; 2023; 41(21):12305-12327. PubMed ID: 36752331
    [TBL] [Abstract][Full Text] [Related]  

  • 13.
    Periwal N; Bhardwaj U; Sarma S; Arora P; Sood V
    Front Cell Infect Microbiol; 2022; 12():966870. PubMed ID: 36519126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SARS-COV-2 as potential microRNA sponge in COVID-19 patients.
    Li C; Wang R; Wu A; Yuan T; Song K; Bai Y; Liu X
    BMC Med Genomics; 2022 Apr; 15(Suppl 2):94. PubMed ID: 35461273
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coding potential and sequence conservation of SARS-CoV-2 and related animal viruses.
    Cagliani R; Forni D; Clerici M; Sironi M
    Infect Genet Evol; 2020 Sep; 83():104353. PubMed ID: 32387562
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure of the SARS-CoV-2 Nsp1/5'-Untranslated Region Complex and Implications for Potential Therapeutic Targets, a Vaccine, and Virulence.
    Vankadari N; Jeyasankar NN; Lopes WJ
    J Phys Chem Lett; 2020 Nov; 11(22):9659-9668. PubMed ID: 33135884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Insights into SARS-CoV-2 genome, structure, evolution, pathogenesis and therapies: Structural genomics approach.
    Naqvi AAT; Fatima K; Mohammad T; Fatima U; Singh IK; Singh A; Atif SM; Hariprasad G; Hasan GM; Hassan MI
    Biochim Biophys Acta Mol Basis Dis; 2020 Oct; 1866(10):165878. PubMed ID: 32544429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Transcription Regulatory Sequence in the 5' Untranslated Region of SARS-CoV-2 Is Vital for Virus Replication with an Altered Evolutionary Pattern against Human Inhibitory MicroRNAs.
    Mohammadi-Dehcheshmeh M; Moghbeli SM; Rahimirad S; Alanazi IO; Shehri ZSA; Ebrahimie E
    Cells; 2021 Feb; 10(2):. PubMed ID: 33557205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human MicroRNAs Interacting With SARS-CoV-2 RNA Sequences: Computational Analysis and Experimental Target Validation.
    Siniscalchi C; Di Palo A; Russo A; Potenza N
    Front Genet; 2021; 12():678994. PubMed ID: 34163530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endogenous miRNA-Based Innate-Immunity against SARS-CoV-2 Invasion of the Brain.
    Lukiw WJ; Pogue AI
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.