These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33670747)

  • 1. The Role of Tenascin C in Cardiac Reverse Remodeling Following Banding-Debanding of the Ascending Aorta.
    Perera-Gonzalez M; Kiss A; Kaiser P; Holzweber M; Nagel F; Watzinger S; Acar E; Szabo PL; Gonçalves IF; Weber L; Pilz PM; Budinsky L; Helbich T; Podesser BK
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670747
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tenascin-C promotes chronic pressure overload-induced cardiac dysfunction, hypertrophy and myocardial fibrosis.
    Podesser BK; Kreibich M; Dzilic E; Santer D; Förster L; Trojanek S; Abraham D; Krššák M; Klein KU; Tretter EV; Kaun C; Wojta J; Kapeller B; Gonçalves IF; Trescher K; Kiss A
    J Hypertens; 2018 Apr; 36(4):847-856. PubMed ID: 29283973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cardiac hypertrophy is enhanced in PPAR alpha-/- mice in response to chronic pressure overload.
    Smeets PJ; Teunissen BE; Willemsen PH; van Nieuwenhoven FA; Brouns AE; Janssen BJ; Cleutjens JP; Staels B; van der Vusse GJ; van Bilsen M
    Cardiovasc Res; 2008 Apr; 78(1):79-89. PubMed ID: 18187461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tenascin-C aggravates ventricular dilatation and angiotensin-converting enzyme activity after myocardial infarction in mice.
    Santer D; Nagel F; Gonçalves IF; Kaun C; Wojta J; Fagyas M; Krššák M; Balogh Á; Papp Z; Tóth A; Bánhegyi V; Trescher K; Kiss A; Podesser BK
    ESC Heart Fail; 2020 Oct; 7(5):2113-2122. PubMed ID: 32639674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Connective tissue growth factor inhibition attenuates left ventricular remodeling and dysfunction in pressure overload-induced heart failure.
    Szabó Z; Magga J; Alakoski T; Ulvila J; Piuhola J; Vainio L; Kivirikko KI; Vuolteenaho O; Ruskoaho H; Lipson KE; Signore P; Kerkelä R
    Hypertension; 2014 Jun; 63(6):1235-40. PubMed ID: 24688123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tenascin-C accelerates adverse ventricular remodelling after myocardial infarction by modulating macrophage polarization.
    Kimura T; Tajiri K; Sato A; Sakai S; Wang Z; Yoshida T; Uede T; Hiroe M; Aonuma K; Ieda M; Imanaka-Yoshida K
    Cardiovasc Res; 2019 Mar; 115(3):614-624. PubMed ID: 30295707
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Angiotensin converting enzyme inhibitor prevents left ventricular remodelling after myocardial infarction in angiotensin II type 1 receptor knockout mice.
    Yoshiyama M; Nakamura Y; Omura T; Izumi Y; Matsumoto R; Oda S; Takeuchi K; Kim S; Iwao H; Yoshikawa J
    Heart; 2005 Aug; 91(8):1080-5. PubMed ID: 16020603
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of biventricular alterations in myocardial (reverse) remodelling in aortic banding-induced chronic pressure overload.
    Miranda-Silva D; Gonçalves-Rodrigues P; Almeida-Coelho J; Hamdani N; Lima T; Conceição G; Sousa-Mendes C; Cláudia-Moura ; González A; Díez J; Linke WA; Leite-Moreira A; Falcão-Pires I
    Sci Rep; 2019 Feb; 9(1):2956. PubMed ID: 30814653
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeted deletion of matrix metalloproteinase 2 ameliorates myocardial remodeling in mice with chronic pressure overload.
    Matsusaka H; Ide T; Matsushima S; Ikeuchi M; Kubota T; Sunagawa K; Kinugawa S; Tsutsui H
    Hypertension; 2006 Apr; 47(4):711-7. PubMed ID: 16505197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tenascin-C may aggravate left ventricular remodeling and function after myocardial infarction in mice.
    Nishioka T; Onishi K; Shimojo N; Nagano Y; Matsusaka H; Ikeuchi M; Ide T; Tsutsui H; Hiroe M; Yoshida T; Imanaka-Yoshida K
    Am J Physiol Heart Circ Physiol; 2010 Mar; 298(3):H1072-8. PubMed ID: 20081106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concentric left ventricular remodeling in endothelial nitric oxide synthase knockout mice by chronic pressure overload.
    Ruetten H; Dimmeler S; Gehring D; Ihling C; Zeiher AM
    Cardiovasc Res; 2005 Jun; 66(3):444-53. PubMed ID: 15914109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Load-Dependent Changes in Left Ventricular Structure and Function in a Pathophysiologically Relevant Murine Model of Reversible Heart Failure.
    Weinheimer CJ; Kovacs A; Evans S; Matkovich SJ; Barger PM; Mann DL
    Circ Heart Fail; 2018 May; 11(5):e004351. PubMed ID: 29716898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic modulation of tenascin C in the heart: implications on myocardial ischemia, hypertrophy and metabolism.
    Gonçalves IF; Acar E; Costantino S; Szabo PL; Hamza O; Tretter EV; Klein KU; Trojanek S; Abraham D; Paneni F; Hallström S; Kiss A; Podesser BK
    J Hypertens; 2019 Sep; 37(9):1861-1870. PubMed ID: 30950975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gender-specific patterns of left ventricular and myocyte remodeling following myocardial infarction in mice deficient in the angiotensin II type 1a receptor.
    Bridgman P; Aronovitz MA; Kakkar R; Oliverio MI; Coffman TM; Rand WM; Konstam MA; Mendelsohn ME; Patten RD
    Am J Physiol Heart Circ Physiol; 2005 Aug; 289(2):H586-92. PubMed ID: 15764682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tenascin-C may accelerate cardiac fibrosis by activating macrophages via the integrin αVβ3/nuclear factor-κB/interleukin-6 axis.
    Shimojo N; Hashizume R; Kanayama K; Hara M; Suzuki Y; Nishioka T; Hiroe M; Yoshida T; Imanaka-Yoshida K
    Hypertension; 2015 Oct; 66(4):757-66. PubMed ID: 26238448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guanylyl cyclase-A inhibits angiotensin II type 1A receptor-mediated cardiac remodeling, an endogenous protective mechanism in the heart.
    Li Y; Kishimoto I; Saito Y; Harada M; Kuwahara K; Izumi T; Takahashi N; Kawakami R; Tanimoto K; Nakagawa Y; Nakanishi M; Adachi Y; Garbers DL; Fukamizu A; Nakao K
    Circulation; 2002 Sep; 106(13):1722-8. PubMed ID: 12270869
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of Rho-kinase ameliorates myocardial remodeling and fibrosis in pressure overload and myocardial infarction: role of TGF-β1-TAK1.
    Li Q; Xu Y; Li X; Guo Y; Liu G
    Toxicol Lett; 2012 Jun; 211(2):91-7. PubMed ID: 22465603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial Reversible Changes Determine Diastolic Function Adaptations During Myocardial (Reverse) Remodeling.
    Miranda-Silva D; G Rodrigues P; Alves E; Rizo D; Fonseca ACRG; Lima T; Baganha F; Conceição G; Sousa C; Gonçalves A; Miranda I; Vasques-Nóvoa F; Magalhães J; Leite-Moreira A; Falcão-Pires I
    Circ Heart Fail; 2020 Nov; 13(11):e006170. PubMed ID: 33176457
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic variation in angiotensin-converting enzyme does not prevent development of cardiac hypertrophy or upregulation of angiotensin II in response to aortocaval fistula.
    Perry GJ; Mori T; Wei CC; Xu XY; Chen YF; Oparil S; Lucchesi P; Dell'Italia LJ
    Circulation; 2001 Feb; 103(7):1012-6. PubMed ID: 11181478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effects of different angiotensin II type 1 receptor blockers on the regulation of the ACE-AngII-AT1 and ACE2-Ang(1-7)-Mas axes in pressure overload-induced cardiac remodeling in male mice.
    Wang X; Ye Y; Gong H; Wu J; Yuan J; Wang S; Yin P; Ding Z; Kang L; Jiang Q; Zhang W; Li Y; Ge J; Zou Y
    J Mol Cell Cardiol; 2016 Aug; 97():180-90. PubMed ID: 27210827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.