BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

569 related articles for article (PubMed ID: 33670778)

  • 1. The Role of Butyrylcholinesterase and Iron in the Regulation of Cholinergic Network and Cognitive Dysfunction in Alzheimer's Disease Pathogenesis.
    Jasiecki J; Targońska M; Wasąg B
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33670778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantification of Butyrylcholinesterase Activity as a Sensitive and Specific Biomarker of Alzheimer's Disease.
    Macdonald IR; Maxwell SP; Reid GA; Cash MK; DeBay DR; Darvesh S
    J Alzheimers Dis; 2017; 58(2):491-505. PubMed ID: 28453492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of exogenous acetylcholinesterase and butyrylcholinesterase with amyloid-β plaques in human brain tissue.
    Reid GA; Darvesh S
    Chem Biol Interact; 2024 May; 395():111012. PubMed ID: 38648920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Butyrylcholinesterase-knockout reduces fibrillar β-amyloid and conserves
    DeBay DR; Reid GA; Macdonald IR; Mawko G; Burrell S; Martin E; Bowen CV; Darvesh S
    Brain Res; 2017 Sep; 1671():102-110. PubMed ID: 28729192
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Butyrylcholinesterase as a Diagnostic and Therapeutic Target for Alzheimer's Disease.
    Darvesh S
    Curr Alzheimer Res; 2016; 13(10):1173-7. PubMed ID: 27040140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alzheimer's disease.
    De-Paula VJ; Radanovic M; Diniz BS; Forlenza OV
    Subcell Biochem; 2012; 65():329-52. PubMed ID: 23225010
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of Exogenous Butyrylcholinesterase with β-Amyloid Plaques in 5XFAD/Butyrylcholinesterase-Knockout Mouse Brain.
    Reid GA; Darvesh S
    Curr Alzheimer Res; 2021; 18(6):470-481. PubMed ID: 34455970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunohistochemical analysis of hippocampal butyrylcholinesterase: Implications for regional vulnerability in Alzheimer's disease.
    Mizukami K; Akatsu H; Abrahamson EE; Mi Z; Ikonomovic MD
    Neuropathology; 2016 Apr; 36(2):135-45. PubMed ID: 26293308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Butyrylcholinesterase radioligands to image Alzheimer's disease brain.
    Darvesh S
    Chem Biol Interact; 2013 Mar; 203(1):354-7. PubMed ID: 22935510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Butyrylcholinesterase signal sequence self-aggregates and enhances amyloid fibril formation in vitro.
    Jasiecki J; Targońska M; Janaszak-Jasiecka A; Kalinowski L; Waleron K; Wasąg B
    Chem Biol Interact; 2023 Dec; 386():110783. PubMed ID: 37884182
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cholinesterases in normal and Alzheimer's disease primary olfactory gyrus.
    Hamodat H; Cash MK; Fisk JD; Darvesh S
    Neuropathol Appl Neurobiol; 2017 Dec; 43(7):571-583. PubMed ID: 28644906
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Butyrylcholinesterase Protein Ends in the Pathogenesis of Alzheimer's Disease-Could
    Jasiecki J; Wasąg B
    Biomolecules; 2019 Oct; 9(10):. PubMed ID: 31601022
    [No Abstract]   [Full Text] [Related]  

  • 13. Synthesis and Preliminary Evaluation of Phenyl 4-123I-Iodophenylcarbamate for Visualization of Cholinesterases Associated with Alzheimer Disease Pathology.
    Macdonald IR; Reid GA; Pottie IR; Martin E; Darvesh S
    J Nucl Med; 2016 Feb; 57(2):297-302. PubMed ID: 26541777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neurological cholinesterases in the normal brain and in Alzheimer's disease: relationship to plaques, tangles, and patterns of selective vulnerability.
    Wright CI; Geula C; Mesulam MM
    Ann Neurol; 1993 Sep; 34(3):373-84. PubMed ID: 8363355
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Butyrylcholinesterase-knockout reduces brain deposition of fibrillar β-amyloid in an Alzheimer mouse model.
    Reid GA; Darvesh S
    Neuroscience; 2015 Jul; 298():424-35. PubMed ID: 25931333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential levels of apolipoprotein E and butyrylcholinesterase show strong association with pathological signs of Alzheimer's disease in the brain in vivo.
    Darreh-Shori T; Forsberg A; Modiri N; Andreasen N; Blennow K; Kamil C; Ahmed H; Almkvist O; Långström B; Nordberg A
    Neurobiol Aging; 2011 Dec; 32(12):2320.e15-32. PubMed ID: 20538374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinesterases: new roles in brain function and in Alzheimer's disease.
    Giacobini E
    Neurochem Res; 2003 Apr; 28(3-4):515-22. PubMed ID: 12675140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models.
    Sebastian Monasor L; Müller SA; Colombo AV; Tanrioever G; König J; Roth S; Liesz A; Berghofer A; Piechotta A; Prestel M; Saito T; Saido TC; Herms J; Willem M; Haass C; Lichtenthaler SF; Tahirovic S
    Elife; 2020 Jun; 9():. PubMed ID: 32510331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tea polyphenols as multi-target therapeutics for Alzheimer's disease: An in silico study.
    Mazumder MK; Choudhury S
    Med Hypotheses; 2019 Apr; 125():94-99. PubMed ID: 30902161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular interaction study of N1-p-fluorobenzyl-cymserine with TNF-α , p38 kinase and JNK kinase.
    Batool S; Nawaz MS; Greig NH; Rehan M; Kamal MA
    Antiinflamm Antiallergy Agents Med Chem; 2013; 12(2):129-35. PubMed ID: 23360257
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.