BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 33670892)

  • 1. Monophonic and Polyphonic Wheezing Classification Based on Constrained Low-Rank Non-Negative Matrix Factorization.
    De La Torre Cruz J; Cañadas Quesada FJ; Ruiz Reyes N; García Galán S; Carabias Orti JJ; Peréz Chica G
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33670892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheeze type classification using non-dyadic wavelet transform based optimal energy ratio technique.
    Ulukaya S; Serbes G; Kahya YP
    Comput Biol Med; 2019 Jan; 104():175-182. PubMed ID: 30496939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheezing Sound Separation Based on Informed Inter-Segment Non-Negative Matrix Partial Co-Factorization.
    Cruz JT; Cañadas Quesada FJ; Reyes NR; Candeas PV; Carabias Orti JJ
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H; Yuan X; Li J; Pei Z; Zheng X
    Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of lung sounds using higher-order statistics: A divide-and-conquer approach.
    Naves R; Barbosa BH; Ferreira DD
    Comput Methods Programs Biomed; 2016 Jun; 129():12-20. PubMed ID: 27084316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Wheezing Detection Based on Signal Processing of Spectrogram and Back-Propagation Neural Network.
    Lin BS; Wu HD; Chen SJ
    J Healthc Eng; 2015; 6(4):649-72. PubMed ID: 27011042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of features for classification of wheezes and normal respiratory sounds.
    Pramono RXA; Imtiaz SA; Rodriguez-Villegas E
    PLoS One; 2019; 14(3):e0213659. PubMed ID: 30861052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of wheeze sounds using cepstral analysis and neural networks.
    Hashemi A; Arabalibeik H; Agin K
    Stud Health Technol Inform; 2012; 173():161-5. PubMed ID: 22356979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for automatic detection of wheezing in lung sounds.
    Riella RJ; Nohama P; Maia JM
    Braz J Med Biol Res; 2009 Jul; 42(7):674-84. PubMed ID: 19578648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An FPGA-based rapid wheezing detection system.
    Lin BS; Yen TS
    Int J Environ Res Public Health; 2014 Jan; 11(2):1573-93. PubMed ID: 24481034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature extraction using time-frequency analysis for monophonic-polyphonic wheeze discrimination.
    Ulukaya S; Sen I; Kahya YP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5412-5. PubMed ID: 26737515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonality-Constrained CNMF-Based Noise Reduction with Reduced Degradation of Biological Sound.
    Murakami N; Nakashima S; Fujimoto K; Makihira S; Nishifuji S; Doi K; Li X; Hirano T; Matsunaga K
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised detection and classification of heartbeats using the dissimilarity matrix in PCG signals.
    Torre-Cruz J; Martinez-Muñoz D; Ruiz-Reyes N; Muñoz-Montoro AJ; Puentes-Chiachio M; Canadas-Quesada FJ
    Comput Methods Programs Biomed; 2022 Jun; 221():106909. PubMed ID: 35649297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-rank matrix factorization approach for joint harmonic and baseline noise suppression in biopotential signals.
    Zivanovic M; Niegowski M; Lecumberri P; Gómez M
    Comput Methods Programs Biomed; 2017 Apr; 141():59-71. PubMed ID: 28241969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of SVM and GMM-Based Classifier Configurations for Diagnostic Classification of Pulmonary Sounds.
    Sen I; Saraclar M; Kahya YP
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1768-76. PubMed ID: 25700439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheezing Lung Sounds Analysis with adaptive local trigonometric transform.
    Ademovic E; Pesquet JC; Charbonneau G
    Technol Health Care; 1998 Jun; 6(1):41-51. PubMed ID: 9754683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lung sounds can be used as an indicator for assessing severity of chronic obstructive pulmonary disease at the initial diagnosis].
    Chen S; Huang M; Peng X; Yuan Y; Huang S; Ye Y; Zhao W; Li B; Han H; Yang S; Cai S; Zhao H
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Feb; 40(2):177-182. PubMed ID: 32376545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.