These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33670892)

  • 1. Monophonic and Polyphonic Wheezing Classification Based on Constrained Low-Rank Non-Negative Matrix Factorization.
    De La Torre Cruz J; Cañadas Quesada FJ; Ruiz Reyes N; García Galán S; Carabias Orti JJ; Peréz Chica G
    Sensors (Basel); 2021 Feb; 21(5):. PubMed ID: 33670892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wheeze type classification using non-dyadic wavelet transform based optimal energy ratio technique.
    Ulukaya S; Serbes G; Kahya YP
    Comput Biol Med; 2019 Jan; 104():175-182. PubMed ID: 30496939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Wheezing Sound Separation Based on Informed Inter-Segment Non-Negative Matrix Partial Co-Factorization.
    Cruz JT; Cañadas Quesada FJ; Reyes NR; Candeas PV; Carabias Orti JJ
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Standard technical specifications for methacholine chloride (Methacholine) bronchial challenge test (2023)].
    ; ;
    Zhonghua Jie He He Hu Xi Za Zhi; 2024 Feb; 47(2):101-119. PubMed ID: 38309959
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection.
    Chen H; Yuan X; Li J; Pei Z; Zheng X
    Comput Methods Programs Biomed; 2019 Sep; 178():163-173. PubMed ID: 31416545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Classification of lung sounds using higher-order statistics: A divide-and-conquer approach.
    Naves R; Barbosa BH; Ferreira DD
    Comput Methods Programs Biomed; 2016 Jun; 129():12-20. PubMed ID: 27084316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automatic Wheezing Detection Based on Signal Processing of Spectrogram and Back-Propagation Neural Network.
    Lin BS; Wu HD; Chen SJ
    J Healthc Eng; 2015; 6(4):649-72. PubMed ID: 27011042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of features for classification of wheezes and normal respiratory sounds.
    Pramono RXA; Imtiaz SA; Rodriguez-Villegas E
    PLoS One; 2019; 14(3):e0213659. PubMed ID: 30861052
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Classification of wheeze sounds using cepstral analysis and neural networks.
    Hashemi A; Arabalibeik H; Agin K
    Stud Health Technol Inform; 2012; 173():161-5. PubMed ID: 22356979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lung sounds classification using convolutional neural networks.
    Bardou D; Zhang K; Ahmad SM
    Artif Intell Med; 2018 Jun; 88():58-69. PubMed ID: 29724435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method for automatic detection of wheezing in lung sounds.
    Riella RJ; Nohama P; Maia JM
    Braz J Med Biol Res; 2009 Jul; 42(7):674-84. PubMed ID: 19578648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An FPGA-based rapid wheezing detection system.
    Lin BS; Yen TS
    Int J Environ Res Public Health; 2014 Jan; 11(2):1573-93. PubMed ID: 24481034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feature extraction using time-frequency analysis for monophonic-polyphonic wheeze discrimination.
    Ulukaya S; Sen I; Kahya YP
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():5412-5. PubMed ID: 26737515
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orthogonality-Constrained CNMF-Based Noise Reduction with Reduced Degradation of Biological Sound.
    Murakami N; Nakashima S; Fujimoto K; Makihira S; Nishifuji S; Doi K; Li X; Hirano T; Matsunaga K
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34883983
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks.
    Jayalakshmy S; Sudha GF
    Artif Intell Med; 2020 Mar; 103():101809. PubMed ID: 32143805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unsupervised detection and classification of heartbeats using the dissimilarity matrix in PCG signals.
    Torre-Cruz J; Martinez-Muñoz D; Ruiz-Reyes N; Muñoz-Montoro AJ; Puentes-Chiachio M; Canadas-Quesada FJ
    Comput Methods Programs Biomed; 2022 Jun; 221():106909. PubMed ID: 35649297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A low-rank matrix factorization approach for joint harmonic and baseline noise suppression in biopotential signals.
    Zivanovic M; Niegowski M; Lecumberri P; Gómez M
    Comput Methods Programs Biomed; 2017 Apr; 141():59-71. PubMed ID: 28241969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison of SVM and GMM-Based Classifier Configurations for Diagnostic Classification of Pulmonary Sounds.
    Sen I; Saraclar M; Kahya YP
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1768-76. PubMed ID: 25700439
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wheezing Lung Sounds Analysis with adaptive local trigonometric transform.
    Ademovic E; Pesquet JC; Charbonneau G
    Technol Health Care; 1998 Jun; 6(1):41-51. PubMed ID: 9754683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Lung sounds can be used as an indicator for assessing severity of chronic obstructive pulmonary disease at the initial diagnosis].
    Chen S; Huang M; Peng X; Yuan Y; Huang S; Ye Y; Zhao W; Li B; Han H; Yang S; Cai S; Zhao H
    Nan Fang Yi Ke Da Xue Xue Bao; 2020 Feb; 40(2):177-182. PubMed ID: 32376545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.