These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33670916)

  • 1. Yttrium's Effect on the Hot Cracking and Creep Properties of a Ni-Based Superalloy Built Up by Additive Manufacturing.
    Banoth S; Palleda TN; Shimazu S; Kakehi K
    Materials (Basel); 2021 Feb; 14(5):. PubMed ID: 33670916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Microstructure and Cracking Mechanisms of Hastelloy X Produced by Laser Powder Bed Fusion.
    Marchese G; Basile G; Bassini E; Aversa A; Lombardi M; Ugues D; Fino P; Biamino S
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microstructural Evolution of Post-Processed Hastelloy X Alloy Fabricated by Laser Powder Bed Fusion.
    Marchese G; Bassini E; Aversa A; Lombardi M; Ugues D; Fino P; Biamino S
    Materials (Basel); 2019 Feb; 12(3):. PubMed ID: 30764476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of serrated grain boundary on tensile and creep properties of a precipitation strengthened high entropy alloy.
    Lee JL; Wang PT; Lo KC; Shen PK; Tsou NT; Kakehi K; Murakami H; Tsai CW; Gorsse S; Yeh AC
    Sci Technol Adv Mater; 2023; 24(1):2158043. PubMed ID: 36684848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication of Crack-Free Nickel-Based Superalloy Considered Non-Weldable during Laser Powder Bed Fusion.
    Sanchez-Mata O; Wang X; Muñiz-Lerma JA; Attarian Shandiz M; Gauvin R; Brochu M
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30046019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical Properties of Structural Components in Hastelloy X Joints Brazed with Ni-Pd-Cr-B-Si Alloy.
    Baranowski M; Senkara J
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Effect of Post-Processes on the Microstructure and Creep Properties of Alloy718 Built Up by Selective Laser Melting.
    Kuo YL; Nagahari T; Kakehi K
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29895773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crack Inhibition and Performance Modification of NiCoCr-Based Superalloy with Y
    Li X; Du J; Xu J; Wang S; Shen M; Jiang C
    Materials (Basel); 2023 May; 16(10):. PubMed ID: 37241243
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Achieving High Strength and Creep Resistance in Inconel 740H Superalloy through Wire-Arc Additive Manufacturing and Thermodynamic-Guided Heat Treatment.
    Sridar S; Ladinos Pizano LF; Klecka MA; Xiong W
    Materials (Basel); 2023 Sep; 16(19):. PubMed ID: 37834525
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluating the Microstructures and Mechanical Properties of Dissimilar Metal Joints Between a New Cast Superalloy K4750 and Hastelloy X Alloy by Using Different Filler Materials.
    Xie J; Ma Y; Ou M; Xing W; Zhang L; Liu K
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30360446
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of crystallographic orientation on subcritical grain boundary cracking in a conventionally cast polycrystalline nickel-based superalloy.
    Swaminathan K; Blendell JE; Trumble KP
    Microsc Microanal; 2013 Aug; 19(4):978-87. PubMed ID: 23718929
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The microstructure and creep behavior of cold rolled udimet 188 sheet.
    Boehlert CJ; Longanbach SC
    Microsc Microanal; 2011 Jun; 17(3):350-61. PubMed ID: 21205424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of rare earth on the microstructures and properties of a low expansion superalloy.
    Wang RM; Song YG; Han YF
    Micron; 2002; 33(6):575-80. PubMed ID: 12020705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Heat Treatment on Microstructure and Mechanical Properties of a Selective Laser Melting Processed Ni-Based Superalloy GTD222.
    Xia T; Wang R; Bi Z; Zhu G; Tan Q; Wang R; Zhang J
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34209292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Laser Energy Density on the Microstructure and Texture Evolution of Hastelloy-X Alloy Fabricated by Laser Powder Bed Fusion.
    Zhang S; Lei Y; Chen Z; Wei P; Liu W; Yao S; Lu B
    Materials (Basel); 2021 Jul; 14(15):. PubMed ID: 34361499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of titanium carbonitride (Ti(C,N)) decomposition on failure mechanisms in Inconel 617 alloy.
    Krishna R; Hainsworth SV; Gill SP; Atkinson HV
    Microsc Res Tech; 2015 May; 78(5):336-42. PubMed ID: 25829182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical study of ductility-dip cracking induced plastic deformation in polycrystalline laser 3D printed Ni-based superalloy.
    Qian D; Xue J; Zhang A; Li Y; Tamura N; Song Z; Chen K
    Sci Rep; 2017 Jun; 7(1):2859. PubMed ID: 28588298
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cracking Behavior of René 104 Nickel-Based Superalloy Prepared by Selective Laser Melting Using Different Scanning Strategies.
    Peng K; Duan R; Liu Z; Lv X; Li Q; Zhao F; Wei B; Nong B; Wei S
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32384809
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of Microstructure and Mechanical Performance of IN738LC Superalloy Thin Wall Produced by Pulsed Plasma Arc Additive Manufacturing.
    Wang K; Sun Z; Liu Y; Lv Y
    Materials (Basel); 2020 Sep; 13(18):. PubMed ID: 32899871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative Study of Microstructure and Mechanical Properties of Two TiAl-Based Alloys Reinforced with Carbide Particles.
    Lapin J; Kamyshnykova K; Klimova A
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731535
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.