BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33671010)

  • 1. Screening for Effects of Inhaled Nanoparticles in Cell Culture Models for Prolonged Exposure.
    Meindl C; Öhlinger K; Zrim V; Steinkogler T; Fröhlich E
    Nanomaterials (Basel); 2021 Feb; 11(3):. PubMed ID: 33671010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transferability and reproducibility of exposed air-liquid interface co-culture lung models.
    Braakhuis HM; Gremmer ER; Bannuscher A; Drasler B; Keshavan S; Rothen-Rutishauser B; Birk B; Verlohner A; Landsiedel R; Meldrum K; Doak SH; Clift MJD; Erdem JS; Foss OAH; Zienolddiny-Narui S; Serchi T; Moschini E; Weber P; Burla S; Kumar P; Schmid O; Zwart E; Vermeulen JP; Vandebriel RJ
    NanoImpact; 2023 Jul; 31():100466. PubMed ID: 37209722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assessment of Carbon Nanotubes on Barrier Function, Ciliary Beating Frequency and Cytokine Release in In Vitro Models of the Respiratory Tract.
    Meindl C; Absenger-Novak M; Jeitler R; Roblegg E; Fröhlich E
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839050
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization of an air-liquid interface
    He RW; Braakhuis HM; Vandebriel RJ; Staal YCM; Gremmer ER; Fokkens PHB; Kemp C; Vermeulen J; Westerink RHS; Cassee FR
    J Aerosol Sci; 2021 Mar; 153():105703. PubMed ID: 33658726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing α-Quartz-Induced Cytotoxicity and Interleukin-8 Release in Pulmonary Mono- and Co-Cultures Exposed under Submerged and Air-Liquid Interface Conditions.
    Friesen A; Fritsch-Decker S; Hufnagel M; Mülhopt S; Stapf D; Hartwig A; Weiss C
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35742856
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles.
    Sayes CM; Reed KL; Warheit DB
    Toxicol Sci; 2007 May; 97(1):163-80. PubMed ID: 17301066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-culture of human alveolar epithelial (hAELVi) and macrophage (THP-1) cell lines.
    Kletting S; Barthold S; Repnik U; Griffiths G; Loretz B; Schneider-Daum N; de Souza Carvalho-Wodarz C; Lehr CM
    ALTEX; 2018; 35(2):211-222. PubMed ID: 29169185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Air-liquid interface culture changes surface properties of A549 cells.
    Öhlinger K; Kolesnik T; Meindl C; Gallé B; Absenger-Novak M; Kolb-Lenz D; Fröhlich E
    Toxicol In Vitro; 2019 Oct; 60():369-382. PubMed ID: 31233786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytokine production by co-cultures exposed to monodisperse amorphous silica nanoparticles: the role of size and surface area.
    Napierska D; Thomassen LC; Vanaudenaerde B; Luyts K; Lison D; Martens JA; Nemery B; Hoet PH
    Toxicol Lett; 2012 Jun; 211(2):98-104. PubMed ID: 22445670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of an
    Dekali S; Gamez C; Kortulewski T; Blazy K; Rat P; Lacroix G
    Toxicol Rep; 2014; 1():157-171. PubMed ID: 28962236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Triple co-culture of human alveolar epithelium, endothelium and macrophages for studying the interaction of nanocarriers with the air-blood barrier.
    Costa A; de Souza Carvalho-Wodarz C; Seabra V; Sarmento B; Lehr CM
    Acta Biomater; 2019 Jun; 91():235-247. PubMed ID: 31004840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dry Generation of CeO
    Cappellini F; Di Bucchianico S; Karri V; Latvala S; Malmlöf M; Kippler M; Elihn K; Hedberg J; Odnevall Wallinder I; Gerde P; Karlsson HL
    Nanomaterials (Basel); 2020 Mar; 10(4):. PubMed ID: 32230801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of concentrated ambient particles on normal and hypersecretory airways in rats.
    Harkema JR; Keeler G; Wagner J; Morishita M; Timm E; Hotchkiss J; Marsik F; Dvonch T; Kaminski N; Barr E
    Res Rep Health Eff Inst; 2004 Aug; (120):1-68; discussion 69-79. PubMed ID: 15543855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential uptake of functionalized polystyrene nanoparticles by human macrophages and a monocytic cell line.
    Lunov O; Syrovets T; Loos C; Beil J; Delacher M; Tron K; Nienhaus GU; Musyanovych A; Mailänder V; Landfester K; Simmet T
    ACS Nano; 2011 Mar; 5(3):1657-69. PubMed ID: 21344890
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined exposure of diesel exhaust particles and respirable Soufrière Hills volcanic ash causes a (pro-)inflammatory response in an in vitro multicellular epithelial tissue barrier model.
    Tomašek I; Horwell CJ; Damby DE; Barošová H; Geers C; Petri-Fink A; Rothen-Rutishauser B; Clift MJ
    Part Fibre Toxicol; 2016 Dec; 13(1):67. PubMed ID: 27955700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Air-liquid interface exposure to aerosols of poorly soluble nanomaterials induces different biological activation levels compared to exposure to suspensions.
    Loret T; Peyret E; Dubreuil M; Aguerre-Chariol O; Bressot C; le Bihan O; Amodeo T; Trouiller B; Braun A; Egles C; Lacroix G
    Part Fibre Toxicol; 2016 Nov; 13(1):58. PubMed ID: 27919268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific uptake and genotoxicity induced by polystyrene nanobeads with distinct surface chemistry on human lung epithelial cells and macrophages.
    Paget V; Dekali S; Kortulewski T; Grall R; Gamez C; Blazy K; Aguerre-Chariol O; Chevillard S; Braun A; Rat P; Lacroix G
    PLoS One; 2015; 10(4):e0123297. PubMed ID: 25875304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An In Vitro Lung System to Assess the Proinflammatory Hazard of Carbon Nanotube Aerosols.
    Barosova H; Karakocak BB; Septiadi D; Petri-Fink A; Stone V; Rothen-Rutishauser B
    Int J Mol Sci; 2020 Jul; 21(15):. PubMed ID: 32727099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of two in vitro systems to assess cellular effects of nanoparticles-containing aerosols.
    Fröhlich E; Bonstingl G; Höfler A; Meindl C; Leitinger G; Pieber TR; Roblegg E
    Toxicol In Vitro; 2013 Feb; 27(1):409-17. PubMed ID: 22906573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Air-liquid Interface Bronchial Epithelial Model for Realistic, Repeated Inhalation Exposure to Airborne Particles for Toxicity Testing.
    Braakhuis HM; He R; Vandebriel RJ; Gremmer ER; Zwart E; Vermeulen JP; Fokkens P; Boere J; Gosens I; Cassee FR
    J Vis Exp; 2020 May; (159):. PubMed ID: 32478724
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.