These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 33671010)

  • 21. Macrophages and dendritic cells express tight junction proteins and exchange particles in an in vitro model of the human airway wall.
    Blank F; Wehrli M; Lehmann A; Baum O; Gehr P; von Garnier C; Rothen-Rutishauser BM
    Immunobiology; 2011; 216(1-2):86-95. PubMed ID: 20362352
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture.
    Wottrich R; Diabaté S; Krug HF
    Int J Hyg Environ Health; 2004 Sep; 207(4):353-61. PubMed ID: 15471099
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Additional NO2 exposure induces a decrease in cytokine specific mRNA expression and cytokine release of particle and fibre exposed human alveolar macrophages.
    Drumm K; Buhl R; Kienast K
    Eur J Med Res; 1999 Feb; 4(2):59-66. PubMed ID: 10066641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct and indirect air particle cytotoxicity in human alveolar epithelial cells.
    Orona NS; Astort F; Maglione GA; Saldiva PH; Yakisich JS; Tasat DR
    Toxicol In Vitro; 2014 Aug; 28(5):796-802. PubMed ID: 24590061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles.
    Oberdorster G
    Inhal Toxicol; 1996; 8 Suppl():73-89. PubMed ID: 11542496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake and effects of orally ingested polystyrene microplastic particles in vitro and in vivo.
    Stock V; Böhmert L; Lisicki E; Block R; Cara-Carmona J; Pack LK; Selb R; Lichtenstein D; Voss L; Henderson CJ; Zabinsky E; Sieg H; Braeuning A; Lampen A
    Arch Toxicol; 2019 Jul; 93(7):1817-1833. PubMed ID: 31139862
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative damage to DNA by diesel exhaust particle exposure in co-cultures of human lung epithelial cells and macrophages.
    Jantzen K; Roursgaard M; Desler C; Loft S; Rasmussen LJ; Møller P
    Mutagenesis; 2012 Nov; 27(6):693-701. PubMed ID: 22869610
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicity of copper oxide nanoparticles in lung epithelial cells exposed at the air-liquid interface compared with in vivo assessment.
    Jing X; Park JH; Peters TM; Thorne PS
    Toxicol In Vitro; 2015 Apr; 29(3):502-11. PubMed ID: 25575782
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An optimized in vitro model of the respiratory tract wall to study particle cell interactions.
    Blank F; Rothen-Rutishauser BM; Schurch S; Gehr P
    J Aerosol Med; 2006; 19(3):392-405. PubMed ID: 17034314
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of residual additives in the cytotoxicity and cytokine release caused by polyvinyl chloride particles in pulmonary cell cultures.
    Xu H; Dinsdale D; Nemery B; Hoet PH
    Toxicol Sci; 2003 Mar; 72(1):92-102. PubMed ID: 12604838
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Titanium Dioxide Particle Type and Concentration Influence the Inflammatory Response in Caco-2 Cells.
    Tada-Oikawa S; Ichihara G; Fukatsu H; Shimanuki Y; Tanaka N; Watanabe E; Suzuki Y; Murakami M; Izuoka K; Chang J; Wu W; Yamada Y; Ichihara S
    Int J Mol Sci; 2016 Apr; 17(4):576. PubMed ID: 27092499
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pro-inflammatory potential of ultrafine particles in mono- and co-cultures of primary cardiac cells.
    Totlandsdal AI; Skomedal T; Låg M; Osnes JB; Refsnes M
    Toxicology; 2008 May; 247(1):23-32. PubMed ID: 18339468
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dendritic cells and macrophages form a transepithelial network against foreign particulate antigens.
    Blank F; Rothen-Rutishauser B; Gehr P
    Am J Respir Cell Mol Biol; 2007 Jun; 36(6):669-77. PubMed ID: 17272826
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In vitro study of the pulmonary translocation of nanoparticles: a preliminary study.
    Geys J; Coenegrachts L; Vercammen J; Engelborghs Y; Nemmar A; Nemery B; Hoet PH
    Toxicol Lett; 2006 Jan; 160(3):218-26. PubMed ID: 16137845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of
    Wang Y; Adamcakova-Dodd A; Steines BR; Jing X; Salem AK; Thorne PS
    NanoImpact; 2020 Apr; 18():. PubMed ID: 32885098
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Impact of mucus modulation by
    Meziu E; Shehu K; Koch M; Schneider M; Kraegeloh A
    Int J Pharm X; 2023 Dec; 6():100212. PubMed ID: 37771516
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Comparison of wood smoke PM2.5 obtained from the combustion of FIR and beech pellets on inflammation and DNA damage in A549 and THP-1 human cell lines.
    Corsini E; Budello S; Marabini L; Galbiati V; Piazzalunga A; Barbieri P; Cozzutto S; Marinovich M; Pitea D; Galli CL
    Arch Toxicol; 2013 Dec; 87(12):2187-99. PubMed ID: 23670201
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reaction of monocytes to polystyrene and silica nanoparticles in short-term and long-term exposures.
    Mrakovcic M; Meindl C; Roblegg E; Fröhlich E
    Toxicol Res (Camb); 2014 Mar; 3(2):86-97. PubMed ID: 26005565
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessing the translocation of silver nanoparticles using an in vitro co-culture model of human airway barrier.
    Zhang F; Aquino GV; Dabi A; Bruce ED
    Toxicol In Vitro; 2019 Apr; 56():1-9. PubMed ID: 30594524
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of exposure approaches to
    Meldrum K; Evans SJ; Vogel U; Tran L; Doak SH; Clift MJD
    Nanotoxicology; 2022 Feb; 16(1):114-134. PubMed ID: 35343373
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.