These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 33671075)

  • 1. Comparison of Pressure-Retarded Osmosis Performance between Pilot-Scale Cellulose Triacetate Hollow-fiber and Polyamide Spiral-Wound Membrane Modules.
    Kakihana Y; Jullok N; Shibuya M; Ikebe Y; Higa M
    Membranes (Basel); 2021 Feb; 11(3):. PubMed ID: 33671075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of DS Concentration on the PRO Performance Using a 5-Inch Scale Cellulose Triacetate-Based Hollow Fiber Membrane Module.
    Yasukawa M; Shigefuji D; Shibuya M; Ikebe Y; Horie R; Higa M
    Membranes (Basel); 2018 May; 8(2):. PubMed ID: 29723953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental investigation of a spiral-wound pressure-retarded osmosis membrane module for osmotic power generation.
    Kim YC; Kim Y; Oh D; Lee KH
    Environ Sci Technol; 2013 Mar; 47(6):2966-73. PubMed ID: 23398240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly robust thin-film composite pressure retarded osmosis (PRO) hollow fiber membranes with high power densities for renewable salinity-gradient energy generation.
    Han G; Wang P; Chung TS
    Environ Sci Technol; 2013 Jul; 47(14):8070-7. PubMed ID: 23772898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Module-scale analysis of pressure retarded osmosis: performance limitations and implications for full-scale operation.
    Straub AP; Lin S; Elimelech M
    Environ Sci Technol; 2014 Oct; 48(20):12435-44. PubMed ID: 25222561
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance Comparison of Spiral-Wound and Plate-and-Frame Forward Osmosis Membrane Module.
    Lee S
    Membranes (Basel); 2020 Oct; 10(11):. PubMed ID: 33143029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients.
    Yip NY; Tiraferri A; Phillip WA; Schiffman JD; Hoover LA; Kim YC; Elimelech M
    Environ Sci Technol; 2011 May; 45(10):4360-9. PubMed ID: 21491936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Outer-selective pressure-retarded osmosis hollow fiber membranes from vacuum-assisted interfacial polymerization for osmotic power generation.
    Sun SP; Chung TS
    Environ Sci Technol; 2013 Nov; 47(22):13167-74. PubMed ID: 24117418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental study of a 4040 spiral-wound forward-osmosis membrane module.
    Kim YC; Park SJ
    Environ Sci Technol; 2011 Sep; 45(18):7737-45. PubMed ID: 21842852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose Triacetate (CTA) Hollow-Fiber (HF) Membranes for Sustainable Seawater Desalination: A Review.
    Nakao T; Miura Y; Furuichi K; Yasukawa M
    Membranes (Basel); 2021 Mar; 11(3):. PubMed ID: 33800203
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adverse impact of feed channel spacers on the performance of pressure retarded osmosis.
    Kim YC; Elimelech M
    Environ Sci Technol; 2012 Apr; 46(8):4673-81. PubMed ID: 22420537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring the Operation Factors that Influence Performance of a Spiral-Wound Forward Osmosis Membrane Process for Scale-up Design.
    Lee S
    Membranes (Basel); 2020 Mar; 10(3):. PubMed ID: 32213880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance limiting effects in power generation from salinity gradients by pressure retarded osmosis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2011 Dec; 45(23):10273-82. PubMed ID: 22022858
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of energy efficiency and power density in pressure retarded osmosis and reverse electrodialysis.
    Yip NY; Elimelech M
    Environ Sci Technol; 2014 Sep; 48(18):11002-12. PubMed ID: 25157687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of biofouling mechanisms between cellulose triacetate (CTA) and thin-film composite (TFC) polyamide forward osmosis membranes in osmotic membrane bioreactors.
    Wang X; Zhao Y; Yuan B; Wang Z; Li X; Ren Y
    Bioresour Technol; 2016 Feb; 202():50-8. PubMed ID: 26700758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of Pressure-Retarded Osmosis for Electricity Generation at Low Temperatures.
    Abbasi-Garravand E; Mulligan CN
    Membranes (Basel); 2021 Jul; 11(8):. PubMed ID: 34436319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of transmembrane hydraulic pressure on performance of forward osmosis membranes.
    Coday BD; Heil DM; Xu P; Cath TY
    Environ Sci Technol; 2013 Mar; 47(5):2386-93. PubMed ID: 23363015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Optimized Preparation Conditions of Cellulose Triacetate Hollow Fiber Reverse Osmosis Membrane with Response Surface Methodology.
    Yang S; Chen K; Xiang H; Wang Y; Huang C
    Polymers (Basel); 2023 Aug; 15(17):. PubMed ID: 37688195
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gypsum scaling in pressure retarded osmosis: experiments, mechanisms and implications.
    Zhang M; Hou D; She Q; Tang CY
    Water Res; 2014 Jan; 48():387-95. PubMed ID: 24156948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development and Industrial-Scale Fabrication of Next-Generation Low-Energy Membranes for Desalination.
    Goh LM; Thong Z; Li WP; Ooi ST; Esa F; Ng KS; Dhalla A; Gudipati C
    Membranes (Basel); 2022 May; 12(5):. PubMed ID: 35629865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.