BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 33671076)

  • 1. TMPRSS11D and TMPRSS13 Activate the SARS-CoV-2 Spike Protein.
    Kishimoto M; Uemura K; Sanaki T; Sato A; Hall WW; Kariwa H; Orba Y; Sawa H; Sasaki M
    Viruses; 2021 Feb; 13(3):. PubMed ID: 33671076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of ACE2 and TMPRSS2 Proteins in the Upper and Lower Aerodigestive Tracts of Rats: Implications on COVID 19 Infections.
    Sato T; Ueha R; Goto T; Yamauchi A; Kondo K; Yamasoba T
    Laryngoscope; 2021 Mar; 131(3):E932-E939. PubMed ID: 32940922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways.
    Laporte M; Raeymaekers V; Van Berwaer R; Vandeput J; Marchand-Casas I; Thibaut HJ; Van Looveren D; Martens K; Hoffmann M; Maes P; Pöhlmann S; Naesens L; Stevaert A
    PLoS Pathog; 2021 Apr; 17(4):e1009500. PubMed ID: 33886690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TMPRSS13 promotes the cell entry of swine acute diarrhea syndrome coronavirus.
    Han Y; Ma Y; Wang Z; Feng F; Zhou L; Feng H; Ma J; Ye R; Zhang R
    J Med Virol; 2024 Jun; 96(6):e29712. PubMed ID: 38808555
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation.
    Hörnich BF; Großkopf AK; Schlagowski S; Tenbusch M; Kleine-Weber H; Neipel F; Stahl-Hennig C; Hahn AS
    J Virol; 2021 Apr; 95(9):. PubMed ID: 33608407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular Interactions of Tannic Acid with Proteins Associated with SARS-CoV-2 Infectivity.
    Haddad M; Gaudreault R; Sasseville G; Nguyen PT; Wiebe H; Van De Ven T; Bourgault S; Mousseau N; Ramassamy C
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient SARS-CoV-2 Infection of Human Cardiomyocytes: Spike Protein-Mediated Cell Fusion and Its Inhibition.
    Navaratnarajah CK; Pease DR; Halfmann PJ; Taye B; Barkhymer A; Howell KG; Charlesworth JE; Christensen TA; Kawaoka Y; Cattaneo R; Schneider JW;
    J Virol; 2021 Nov; 95(24):e0136821. PubMed ID: 34613786
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized Pseudotyping Conditions for the SARS-COV-2 Spike Glycoprotein.
    Johnson MC; Lyddon TD; Suarez R; Salcedo B; LePique M; Graham M; Ricana C; Robinson C; Ritter DG
    J Virol; 2020 Oct; 94(21):. PubMed ID: 32788194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SARS-CoV-2 Omicron entry is type II transmembrane serine protease-mediated in human airway and intestinal organoid models.
    Mykytyn AZ; Breugem TI; Geurts MH; Beumer J; Schipper D; van Acker R; van den Doel PB; van Royen ME; Zhang J; Clevers H; Haagmans BL; Lamers MM
    J Virol; 2023 Aug; 97(8):e0085123. PubMed ID: 37555660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein.
    Heurich A; Hofmann-Winkler H; Gierer S; Liepold T; Jahn O; Pöhlmann S
    J Virol; 2014 Jan; 88(2):1293-307. PubMed ID: 24227843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2.
    Matsuyama S; Nagata N; Shirato K; Kawase M; Takeda M; Taguchi F
    J Virol; 2010 Dec; 84(24):12658-64. PubMed ID: 20926566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity.
    Meng B; Abdullahi A; Ferreira IATM; Goonawardane N; Saito A; Kimura I; Yamasoba D; Gerber PP; Fatihi S; Rathore S; Zepeda SK; Papa G; Kemp SA; Ikeda T; Toyoda M; Tan TS; Kuramochi J; Mitsunaga S; Ueno T; Shirakawa K; Takaori-Kondo A; Brevini T; Mallery DL; Charles OJ; ; ; ; Bowen JE; Joshi A; Walls AC; Jackson L; Martin D; Smith KGC; Bradley J; Briggs JAG; Choi J; Madissoon E; Meyer KB; Mlcochova P; Ceron-Gutierrez L; Doffinger R; Teichmann SA; Fisher AJ; Pizzuto MS; de Marco A; Corti D; Hosmillo M; Lee JH; James LC; Thukral L; Veesler D; Sigal A; Sampaziotis F; Goodfellow IG; Matheson NJ; Sato K; Gupta RK
    Nature; 2022 Mar; 603(7902):706-714. PubMed ID: 35104837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systematic analysis of SARS-CoV-2 infection of an ACE2-negative human airway cell.
    Puray-Chavez M; LaPak KM; Schrank TP; Elliott JL; Bhatt DP; Agajanian MJ; Jasuja R; Lawson DQ; Davis K; Rothlauf PW; Liu Z; Jo H; Lee N; Tenneti K; Eschbach JE; Shema Mugisha C; Cousins EM; Cloer EW; Vuong HR; VanBlargan LA; Bailey AL; Gilchuk P; Crowe JE; Diamond MS; Hayes DN; Whelan SPJ; Horani A; Brody SL; Goldfarb D; Major MB; Kutluay SB
    Cell Rep; 2021 Jul; 36(2):109364. PubMed ID: 34214467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hesperidin Is a Potential Inhibitor against SARS-CoV-2 Infection.
    Cheng FJ; Huynh TK; Yang CS; Hu DW; Shen YC; Tu CY; Wu YC; Tang CH; Huang WC; Chen Y; Ho CY
    Nutrients; 2021 Aug; 13(8):. PubMed ID: 34444960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19.
    Senapati S; Banerjee P; Bhagavatula S; Kushwaha PP; Kumar S
    J Genet; 2021; 100(1):. PubMed ID: 33707363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid SARS-CoV-2 Adaptation to Available Cellular Proteases.
    Chaudhry MZ; Eschke K; Hoffmann M; Grashoff M; Abassi L; Kim Y; Brunotte L; Ludwig S; Kröger A; Klawonn F; Pöhlmann SH; Cicin-Sain L
    J Virol; 2022 Mar; 96(5):e0218621. PubMed ID: 35019723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bromelain inhibits SARS-CoV-2 infection via targeting ACE-2, TMPRSS2, and spike protein.
    Sagar S; Rathinavel AK; Lutz WE; Struble LR; Khurana S; Schnaubelt AT; Mishra NK; Guda C; Palermo NY; Broadhurst MJ; Hoffmann T; Bayles KW; Reid SPM; Borgstahl GEO; Radhakrishnan P
    Clin Transl Med; 2021 Feb; 11(2):e281. PubMed ID: 33635001
    [No Abstract]   [Full Text] [Related]  

  • 18. Impact of SARS-CoV-2 Spike Mutations on Its Activation by TMPRSS2 and the Alternative TMPRSS13 Protease.
    Stevaert A; Van Berwaer R; Mestdagh C; Vandeput J; Vanstreels E; Raeymaekers V; Laporte M; Naesens L
    mBio; 2022 Aug; 13(4):e0137622. PubMed ID: 35913162
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nasopharyngeal Expression of Angiotensin-Converting Enzyme 2 and Transmembrane Serine Protease 2 in Children within SARS-CoV-2-Infected Family Clusters.
    Hasan MR; Ahmad MN; Dargham SR; Zayed H; Al Hashemi A; Ngwabi N; Perez Lopez A; Dobson S; Abu Raddad LJ; Tang P
    Microbiol Spectr; 2021 Dec; 9(3):e0078321. PubMed ID: 34730438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Priming of SARS-CoV-2 S protein by several membrane-bound serine proteinases could explain enhanced viral infectivity and systemic COVID-19 infection.
    Fuentes-Prior P
    J Biol Chem; 2021; 296():100135. PubMed ID: 33268377
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.