These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
149 related articles for article (PubMed ID: 33671122)
21. Effect of autochthonous starter cultures on the biogenic amine content of ewe's milk cheese throughout ripening. Renes E; Diezhandino I; Fernández D; Ferrazza RE; Tornadijo ME; Fresno JM Food Microbiol; 2014 Dec; 44():271-7. PubMed ID: 25084673 [TBL] [Abstract][Full Text] [Related]
22. Genotypic identification of some lactic acid bacteria by amplified fragment length polymorphism analysis and investigation of their potential usage as starter culture combinations in Beyaz cheese manufacture. Karahan AG; Başyiğit Kiliç G; Kart A; Sanlidere Aloğlu H; Oner Z; Aydemir S; Erkuş O; Harsa S J Dairy Sci; 2010 Jan; 93(1):1-11. PubMed ID: 20059897 [TBL] [Abstract][Full Text] [Related]
23. Effects of mixed starter composition on nisin Z production by lactococcus lactis subsp. lactis biovar. diacetylactis UL 719 during production and ripening of Gouda cheese. Bouksaim M; Lacroix C; Audet P; Simard RE Int J Food Microbiol; 2000 Sep; 59(3):141-56. PubMed ID: 11020036 [TBL] [Abstract][Full Text] [Related]
24. Influence of starters on chemical, biochemical, and sensory changes in Turkish White-brined cheese during ripening. Hayaloglu AA; Guven M; Fox PF; McSweeney PL J Dairy Sci; 2005 Oct; 88(10):3460-74. PubMed ID: 16162519 [TBL] [Abstract][Full Text] [Related]
25. Effect of pasteurization of Ewe's milk and use of a native starter culture on the volatile components and sensory characteristics of roncal cheese. Ortigosa M; Torre P; Izco JM J Dairy Sci; 2001 Jun; 84(6):1320-30. PubMed ID: 11417688 [TBL] [Abstract][Full Text] [Related]
26. Microbial Activation of Wooden Vats Used for Traditional Cheese Production and Evolution of Neoformed Biofilms. Gaglio R; Cruciata M; Di Gerlando R; Scatassa ML; Cardamone C; Mancuso I; Sardina MT; Moschetti G; Portolano B; Settanni L Appl Environ Microbiol; 2016 Jan; 82(2):585-95. PubMed ID: 26546430 [TBL] [Abstract][Full Text] [Related]
27. Starter strain related effects on the biochemical and sensory properties of Cheddar cheese. Hickey DK; Kilcawley KN; Beresford TP; Sheehan EM; Wilkinson MG J Dairy Res; 2007 Feb; 74(1):9-17. PubMed ID: 16987432 [TBL] [Abstract][Full Text] [Related]
28. Volatile and sensory evaluation of Mexican Fresco cheese as affected by specific wild Lactococcus lactis strains. Reyes-Díaz R; González-Córdova AF; Del Carmen Estrada-Montoya M; Méndez-Romero JI; Mazorra-Manzano MA; Soto-Valdez H; Vallejo-Cordoba B J Dairy Sci; 2020 Jan; 103(1):242-253. PubMed ID: 31733845 [TBL] [Abstract][Full Text] [Related]
29. Use of Taiwanese ropy fermented milk (TRFM) and Lactococcus lactis subsp. cremoris isolated from TRFM in manufacturing of functional low-fat cheeses. Chiang ML; Chen HC; Wang SY; Hsieh YL; Chen MJ J Food Sci; 2011 Sep; 76(7):M504-10. PubMed ID: 22417556 [TBL] [Abstract][Full Text] [Related]
30. A sensory- and consumer-based approach to optimize cheese enrichment with grape skin powders. Torri L; Piochi M; Marchiani R; Zeppa G; Dinnella C; Monteleone E J Dairy Sci; 2016 Jan; 99(1):194-204. PubMed ID: 26585476 [TBL] [Abstract][Full Text] [Related]
31. Effect of wild strains of Lactococcus lactis on the volatile profile and the sensory characteristics of ewes' raw milk cheese. Centeno JA; Tomillo FJ; Fernández-García E; Gaya P; Nuñez M J Dairy Sci; 2002 Dec; 85(12):3164-72. PubMed ID: 12512589 [TBL] [Abstract][Full Text] [Related]
32. Flavor enhancement of reduced fat cheddar cheese using an integrated culturing system. Midje DL; Bastian ED; Morris HA; Martin FB; Bridgeman T; Vickers ZM J Agric Food Chem; 2000 May; 48(5):1630-6. PubMed ID: 10820070 [TBL] [Abstract][Full Text] [Related]
33. Sensory Profile and Consumers' Liking of Functional Ovine Cheese. Santillo A; Albenzio M Foods; 2015 Nov; 4(4):665-677. PubMed ID: 28231229 [TBL] [Abstract][Full Text] [Related]
34. Attenuated Lactococcus lactis and Surface Bacteria as Tools for Conditioning the Microbiota and Driving the Ripening of Semisoft Caciotta Cheese. Calasso M; Minervini F; De Filippis F; Ercolini D; De Angelis M; Gobbetti M Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862717 [TBL] [Abstract][Full Text] [Related]
35. Microbiology of Cheddar cheese made with different fat contents using a Lactococcus lactis single-strain starter. Broadbent JR; Brighton C; McMahon DJ; Farkye NY; Johnson ME; Steele JL J Dairy Sci; 2013 Jul; 96(7):4212-22. PubMed ID: 23684037 [TBL] [Abstract][Full Text] [Related]
36. Study of Lactococcus lactis during advanced ripening stages of model cheeses characterized by GC-MS. Ruggirello M; Giordano M; Bertolino M; Ferrocino I; Cocolin L; Dolci P Food Microbiol; 2018 Sep; 74():132-142. PubMed ID: 29706329 [TBL] [Abstract][Full Text] [Related]
37. Transformation of raw ewes' milk applying "Grana" type pressed cheese technology: Development of extra-hard "Gran Ovino" cheese. Gaglio R; Todaro M; Scatassa ML; Franciosi E; Corona O; Mancuso I; Di Gerlando R; Cardamone C; Settanni L Int J Food Microbiol; 2019 Oct; 307():108277. PubMed ID: 31404779 [TBL] [Abstract][Full Text] [Related]
38. Outgrowth inhibition of Clostridium beijerinckii spores by a bacteriocin-producing lactic culture in ovine milk cheese. Garde S; Avila M; Arias R; Gaya P; Nuñez M Int J Food Microbiol; 2011 Oct; 150(1):59-65. PubMed ID: 21849216 [TBL] [Abstract][Full Text] [Related]
39. Effect of commercial grape extracts on the cheese-making properties of milk. Felix da Silva D; Matumoto-Pintro PT; Bazinet L; Couillard C; Britten M J Dairy Sci; 2015 Mar; 98(3):1552-62. PubMed ID: 25597978 [TBL] [Abstract][Full Text] [Related]
40. Effect of exopolysaccharide produced by isogenic strains of Lactococcus lactis on half-fat Cheddar cheese. Costa NE; Hannon JA; Guinee TP; Auty MA; McSweeney PL; Beresford TP J Dairy Sci; 2010 Aug; 93(8):3469-86. PubMed ID: 20655415 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]