BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33671175)

  • 1. Polycaprolactone-Based Scaffolds Facilitates Osteogenic Differentiation of Human Adipose-Derived Stem Cells in a Co-Culture System.
    Rozila I; Azari P; Munirah S; Safwani WKZW; Pingguan-Murphy B; Chua KH
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33671175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Baghdadite ceramics modulate the cross talk between human adipose stem cells and osteoblasts for bone regeneration.
    Lu Z; Wang G; Roohani-Esfahani I; Dunstan CR; Zreiqat H
    Tissue Eng Part A; 2014 Mar; 20(5-6):992-1002. PubMed ID: 24195838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the osteogenic potential of rat adipose-derived stem cells with different polycaprolactone/alginate-based nanofibrous scaffolds: an
    Hany E; Yahia S; Elsherbeny MF; Salama NM; Ateia IM; Abou El-Khier NT; El-Sherbiny I; Abou Elkhier MT
    Stem Cell Investig; 2020; 7():14. PubMed ID: 32964007
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bioactive glass particles on osteogenic differentiation of adipose-derived mesenchymal stem cells seeded on lactide and caprolactone based scaffolds.
    Larrañaga A; Alonso-Varona A; Palomares T; Rubio-Azpeitia E; Aldazabal P; Martin FJ; Sarasua JR
    J Biomed Mater Res A; 2015 Dec; 103(12):3815-24. PubMed ID: 26074489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of three-dimensionally printed polycaprolactone/β-tricalcium phosphate scaffold on osteogenic differentiation of adipose tissue- and bone marrow-derived stem cells.
    Park H; Kim JS; Oh EJ; Kim TJ; Kim HM; Shim JH; Yoon WS; Huh JB; Moon SH; Kang SS; Chung HY
    Arch Craniofac Surg; 2018 Sep; 19(3):181-189. PubMed ID: 30282427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of osteoconductive effect of polycaprolactone (PCL) scaffold treated with
    Teymori M; Karimi E; Saburi E
    Am J Stem Cells; 2023; 12(4):83-91. PubMed ID: 38021455
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteogenic Differentiation Potential of Adipose-Derived Mesenchymal Stem Cells Cultured on Magnesium Oxide/Polycaprolactone Nanofibrous Scaffolds for Improving Bone Tissue Reconstruction.
    Niknam Z; Golchin A; Rezaei-Tavirani M; Ranjbarvan P; Zali H; Omidi M; Mansouri V
    Adv Pharm Bull; 2022 Jan; 12(1):142-154. PubMed ID: 35517875
    [No Abstract]   [Full Text] [Related]  

  • 8. 3D-Printed PCL Scaffolds Coated with Nanobioceramics Enhance Osteogenic Differentiation of Stem Cells.
    Fazeli N; Arefian E; Irani S; Ardeshirylajimi A; Seyedjafari E
    ACS Omega; 2021 Dec; 6(51):35284-35296. PubMed ID: 34984260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential osteogenic potential of human adipose-derived stem cells co-cultured with human osteoblasts on polymeric microfiber scaffolds.
    Rozila I; Azari P; Munirah S; Wan Safwani WK; Gan SN; Nur Azurah AG; Jahendran J; Pingguan-Murphy B; Chua KH
    J Biomed Mater Res A; 2016 Feb; 104(2):377-87. PubMed ID: 26414782
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field.
    Arjmand M; Ardeshirylajimi A; Maghsoudi H; Azadian E
    J Cell Physiol; 2018 Feb; 233(2):1061-1070. PubMed ID: 28419435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of bone biocompatible implants using human adipose-derived mesenchymal stem cells (hADMSCs) and PCL/laminin scaffold substrate.
    Zeydari D; Karimi E; Saburi E
    Iran J Basic Med Sci; 2024; 27(2):118-194. PubMed ID: 38234673
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-dimensional printed polycaprolactone-based scaffolds provide an advantageous environment for osteogenic differentiation of human adipose-derived stem cells.
    Rumiński S; Ostrowska B; Jaroszewicz J; Skirecki T; Włodarski K; Święszkowski W; Lewandowska-Szumieł M
    J Tissue Eng Regen Med; 2018 Jan; 12(1):e473-e485. PubMed ID: 27599449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo bone formation following transplantation of human adipose-derived stromal cells that are not differentiated osteogenically.
    Jeon O; Rhie JW; Kwon IK; Kim JH; Kim BS; Lee SH
    Tissue Eng Part A; 2008 Aug; 14(8):1285-94. PubMed ID: 18593269
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adipose-derived stem cells-conditioned medium improved osteogenic differentiation of induced pluripotent stem cells when grown on polycaprolactone nanofibers.
    Soleimanifar F; Hosseini FS; Atabati H; Behdari A; Kabiri L; Enderami SE; Khani MM; Ardeshirylajimi A; Saburi E
    J Cell Physiol; 2019 Jul; 234(7):10315-10323. PubMed ID: 30378123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone Morphogenetic Protein 2-Conjugated Silica Particles Enhanced Early Osteogenic Differentiation of Adipose Stem Cells on the Polycaprolactone Scaffold.
    Kim KJ; Choi MS; Shim JH; Rhie JW
    Tissue Eng Regen Med; 2019 Aug; 16(4):395-403. PubMed ID: 31413943
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of polycaprolactone-biphasic calcium phosphate scaffolds on enhancing growth and differentiation of osteoblasts.
    Thuaksuban N; Monmaturapoj N; Luntheng T
    Biomed Mater Eng; 2018; 29(2):159-176. PubMed ID: 29457591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
    Park H; Lim DJ; Lee SH; Park H
    J Biomed Nanotechnol; 2016 Nov; 12(11):2076-82. PubMed ID: 29364624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteogenic differentiation of human Wharton's jelly stem cells on nanofibrous substrates in vitro.
    Gauthaman K; Venugopal JR; Yee FC; Biswas A; Ramakrishna S; Bongso A
    Tissue Eng Part A; 2011 Jan; 17(1-2):71-81. PubMed ID: 20673136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of Distribution and Osteogenic Differentiation of Human Mesenchymal Stem Cells by Hyaluronic Acid and β-Tricalcium Phosphate-Coated Polymeric Scaffold In Vitro.
    Chen M; Le DQ; Kjems J; Bünger C; Lysdahl H
    Biores Open Access; 2015; 4(1):363-73. PubMed ID: 26487981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Repair of calvarial defects with customized tissue-engineered bone grafts I. Evaluation of osteogenesis in a three-dimensional culture system.
    Schantz JT; Teoh SH; Lim TC; Endres M; Lam CX; Hutmacher DW
    Tissue Eng; 2003; 9 Suppl 1():S113-26. PubMed ID: 14511475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.