BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 33671329)

  • 21. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alginate-Based Biomaterials for Regenerative Medicine Applications.
    Sun J; Tan H
    Materials (Basel); 2013 Mar; 6(4):1285-1309. PubMed ID: 28809210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development and Biocompatibility of Collagen-Based Composites Enriched with Nanoparticles of Strontium Containing Mesoporous Glass.
    Montalbano G; Borciani G; Pontremoli C; Ciapetti G; Mattioli-Belmonte M; Fiorilli S; Vitale-Brovarone C
    Materials (Basel); 2019 Nov; 12(22):. PubMed ID: 31717980
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Extracellular matrix-based biomaterial scaffolds and the host response.
    Aamodt JM; Grainger DW
    Biomaterials; 2016 Apr; 86():68-82. PubMed ID: 26890039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biodegradation, biocompatibility, and osteoconduction evaluation of collagen-nanohydroxyapatite cryogels for bone tissue regeneration.
    Salgado CL; Grenho L; Fernandes MH; Colaço BJ; Monteiro FJ
    J Biomed Mater Res A; 2016 Jan; 104(1):57-70. PubMed ID: 26179958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In vitro analysis of anionic collagen scaffolds for bone repair.
    Moreira PL; An YH; Santos AR; Genari SC
    J Biomed Mater Res B Appl Biomater; 2004 Nov; 71(2):229-37. PubMed ID: 15386402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering.
    Long T; Yang J; Shi SS; Guo YP; Ke QF; Zhu ZA
    J Biomed Mater Res B Appl Biomater; 2015 Oct; 103(7):1455-64. PubMed ID: 25430707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Collagen for bone tissue regeneration.
    Ferreira AM; Gentile P; Chiono V; Ciardelli G
    Acta Biomater; 2012 Sep; 8(9):3191-200. PubMed ID: 22705634
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications.
    Przekora A
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():1036-1051. PubMed ID: 30678895
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fractionated human adipose tissue as a native biomaterial for the generation of a bone organ by endochondral ossification.
    Guerrero J; Pigeot S; Müller J; Schaefer DJ; Martin I; Scherberich A
    Acta Biomater; 2018 Sep; 77():142-154. PubMed ID: 30126590
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bone tissue engineering scaffolding: computer-aided scaffolding techniques.
    Thavornyutikarn B; Chantarapanich N; Sitthiseripratip K; Thouas GA; Chen Q
    Prog Biomater; 2014; 3():61-102. PubMed ID: 26798575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering.
    Swetha M; Sahithi K; Moorthi A; Srinivasan N; Ramasamy K; Selvamurugan N
    Int J Biol Macromol; 2010 Jul; 47(1):1-4. PubMed ID: 20361991
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Small intestinal submucosa: A potential osteoconductive and osteoinductive biomaterial for bone tissue engineering.
    Li M; Zhang C; Cheng M; Gu Q; Zhao J
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():149-156. PubMed ID: 28415442
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intrafibrillar Mineralized Collagen-Hydroxyapatite-Based Scaffolds for Bone Regeneration.
    Yu L; Rowe DW; Perera IP; Zhang J; Suib SL; Xin X; Wei M
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18235-18249. PubMed ID: 32212615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Gellan gum-hydroxyapatite composite spongy-like hydrogels for bone tissue engineering.
    Manda MG; da Silva LP; Cerqueira MT; Pereira DR; Oliveira MB; Mano JF; Marques AP; Oliveira JM; Correlo VM; Reis RL
    J Biomed Mater Res A; 2018 Feb; 106(2):479-490. PubMed ID: 28960767
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biocompatibility of hydrogel-based scaffolds for tissue engineering applications.
    Naahidi S; Jafari M; Logan M; Wang Y; Yuan Y; Bae H; Dixon B; Chen P
    Biotechnol Adv; 2017 Sep; 35(5):530-544. PubMed ID: 28558979
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spatiotemporal Control Strategies for Bone Formation through Tissue Engineering and Regenerative Medicine Approaches.
    White KA; Olabisi RM
    Adv Healthc Mater; 2019 Jan; 8(2):e1801044. PubMed ID: 30556328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biomimetic poly(glycerol sebacate)/polycaprolactone blend scaffolds for cartilage tissue engineering.
    Liu Y; Tian K; Hao J; Yang T; Geng X; Zhang W
    J Mater Sci Mater Med; 2019 Apr; 30(5):53. PubMed ID: 31037512
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modifying the strength and strain concentration profile within collagen scaffolds using customizable arrays of poly-lactic acid fibers.
    Mozdzen LC; Vucetic A; Harley BAC
    J Mech Behav Biomed Mater; 2017 Feb; 66():28-36. PubMed ID: 27829193
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Collagen-based bioinks for hard tissue engineering applications: a comprehensive review.
    Marques CF; Diogo GS; Pina S; Oliveira JM; Silva TH; Reis RL
    J Mater Sci Mater Med; 2019 Mar; 30(3):32. PubMed ID: 30840132
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.