These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 33671342)

  • 21. Antibody association in solution: cluster distributions and mechanisms.
    Brudar S; Breydo L; Chung E; Dill KA; Ehterami N; Phadnis K; Senapati S; Shameem M; Tang X; Tayyab M; Hribar-Lee B
    MAbs; 2024; 16(1):2339582. PubMed ID: 38666507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Weak interactions govern the viscosity of concentrated antibody solutions: high-throughput analysis using the diffusion interaction parameter.
    Connolly BD; Petry C; Yadav S; Demeule B; Ciaccio N; Moore JM; Shire SJ; Gokarn YR
    Biophys J; 2012 Jul; 103(1):69-78. PubMed ID: 22828333
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From osmotic second virial coefficient (B22 ) to phase behavior of a monoclonal antibody.
    Rakel N; Bauer KC; Galm L; Hubbuch J
    Biotechnol Prog; 2015; 31(2):438-51. PubMed ID: 25683855
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-protein interactions in dilute to concentrated solutions: α-chymotrypsinogen in acidic conditions.
    Blanco MA; Perevozchikova T; Martorana V; Manno M; Roberts CJ
    J Phys Chem B; 2014 Jun; 118(22):5817-31. PubMed ID: 24810917
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting High-Concentration Interactions of Monoclonal Antibody Solutions: Comparison of Theoretical Approaches for Strongly Attractive Versus Repulsive Conditions.
    Calero-Rubio C; Saluja A; Sahin E; Roberts CJ
    J Phys Chem B; 2019 Jul; 123(27):5709-5720. PubMed ID: 31241333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Effect of Low Ionic Strength on Diffusion and Viscosity of Monoclonal Antibodies.
    Pindrus MA; Shire SJ; Yadav S; Kalonia DS
    Mol Pharm; 2018 Aug; 15(8):3133-3142. PubMed ID: 29996057
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interpretation of negative second virial coefficients from non-attractive protein solution osmotic pressure data: an alternate perspective.
    McBride DW; Rodgers VG
    Biophys Chem; 2013 Dec; 184():79-86. PubMed ID: 24141326
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Behavior of monoclonal antibodies: relation between the second virial coefficient (B (2)) at low concentrations and aggregation propensity and viscosity at high concentrations.
    Saito S; Hasegawa J; Kobayashi N; Kishi N; Uchiyama S; Fukui K
    Pharm Res; 2012 Feb; 29(2):397-410. PubMed ID: 21853361
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Osmotic virial coefficients for model protein and colloidal solutions: importance of ensemble constraints in the analysis of light scattering data.
    Siderius DW; Krekelberg WP; Roberts CJ; Shen VK
    J Chem Phys; 2012 May; 136(17):175102. PubMed ID: 22583267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A multisolute osmotic virial equation for solutions of interest in biology.
    Elliott JA; Prickett RC; Elmoazzen HY; Porter KR; McGann LE
    J Phys Chem B; 2007 Feb; 111(7):1775-85. PubMed ID: 17266364
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cluster Percolation Causes Shear Thinning Behavior in Concentrated Solutions of Monoclonal Antibodies.
    Lanzaro A; Roche A; Sibanda N; Corbett D; Davis P; Shah M; Pathak JA; Uddin S; van der Walle CF; Yuan XF; Pluen A; Curtis R
    Mol Pharm; 2021 Jul; 18(7):2669-2682. PubMed ID: 34121411
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Protein-protein interactions and water activity coefficients can be used to aid a first excipient choice in protein formulations.
    Schleinitz M; Sadowski G; Brandenbusch C
    Int J Pharm; 2019 Oct; 569():118608. PubMed ID: 31415881
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence of Many-Body Interactions in the Virial Coefficients of Polyelectrolyte Gels.
    Horkay F; Douglas JF
    Gels; 2022 Feb; 8(2):. PubMed ID: 35200477
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscosity Analysis of Dual Variable Domain Immunoglobulin Protein Solutions: Role of Size, Electroviscous Effect and Protein-Protein Interactions.
    Raut AS; Kalonia DS
    Pharm Res; 2016 Jan; 33(1):155-66. PubMed ID: 26286186
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dipolar Interactions and Protein Hydration in Highly Concentrated Antibody Formulations.
    Hartl J; Friesen S; Johannsmann D; Buchner R; Hinderberger D; Blech M; Garidel P
    Mol Pharm; 2022 Feb; 19(2):494-507. PubMed ID: 35073097
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions between colloidal particles in polymer solutions: A density functional theory study.
    Patel N; Egorov SA
    J Chem Phys; 2004 Sep; 121(10):4987-97. PubMed ID: 15332935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting Protein-Protein Interactions of Concentrated Antibody Solutions Using Dilute Solution Data and Coarse-Grained Molecular Models.
    Calero-Rubio C; Ghosh R; Saluja A; Roberts CJ
    J Pharm Sci; 2018 May; 107(5):1269-1281. PubMed ID: 29274822
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hofmeister Effects in Monoclonal Antibody Solution Interactions.
    Arzenšek D; Kuzman D; Podgornik R
    J Phys Chem B; 2015 Aug; 119(33):10375-89. PubMed ID: 26207819
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Viscosity analysis of high concentration bovine serum albumin aqueous solutions.
    Yadav S; Shire SJ; Kalonia DS
    Pharm Res; 2011 Aug; 28(8):1973-83. PubMed ID: 21491149
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.