These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 33671497)

  • 1. A Data-Driven Approach to Predict Fatigue in Exercise Based on Motion Data from Wearable Sensors or Force Plate.
    Jiang Y; Hernandez V; Venture G; Kulić D; K Chen B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671497
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time forecasting of exercise-induced fatigue from wearable sensors.
    Jiang Y; Malliaras P; Chen B; Kulić D
    Comput Biol Med; 2022 Sep; 148():105905. PubMed ID: 35905661
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-based data augmentation for user-independent fatigue estimation.
    Jiang Y; Malliaras P; Chen B; Kulić D
    Comput Biol Med; 2021 Oct; 137():104839. PubMed ID: 34520991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Data-Driven Approach to Physical Fatigue Management Using Wearable Sensors to Classify Four Diagnostic Fatigue States.
    Pinto-Bernal MJ; Cifuentes CA; Perdomo O; Rincón-Roncancio M; Múnera M
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640722
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Technology in Strength and Conditioning: Assessing Bodyweight Squat Technique With Wearable Sensors.
    OʼReilly MA; Whelan DF; Ward TE; Delahunt E; Caulfield BM
    J Strength Cond Res; 2017 Aug; 31(8):2303-2312. PubMed ID: 28731981
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate Impact Loading Rate Estimation During Running via a Subject-Independent Convolutional Neural Network Model and Optimal IMU Placement.
    Tan T; Strout ZA; Shull PB
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):1215-1222. PubMed ID: 32763858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial sensor-based gait parameters reflect patient-reported fatigue in multiple sclerosis.
    Ibrahim AA; Küderle A; Gaßner H; Klucken J; Eskofier BM; Kluge F
    J Neuroeng Rehabil; 2020 Dec; 17(1):165. PubMed ID: 33339530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Technology in Rehabilitation: Comparing Personalised and Global Classification Methodologies in Evaluating the Squat Exercise with Wearable IMUs.
    Whelan DF; O'Reilly MA; Ward TE; Delahunt E; Caulfield B
    Methods Inf Med; 2017 Oct; 56(5):361-369. PubMed ID: 28612890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. IMU-to-Segment Assignment and Orientation Alignment for the Lower Body Using Deep Learning.
    Zimmermann T; Taetz B; Bleser G
    Sensors (Basel); 2018 Jan; 18(1):. PubMed ID: 29351262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Automatic Classification of Squat Posture Using Inertial Sensors: Deep Learning Approach.
    Lee J; Joo H; Lee J; Chee Y
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31936407
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of machine learning models' accuracy in predicting lower-limb joints' kinematics, kinetics, and muscle forces from wearable sensors.
    Moghadam SM; Yeung T; Choisne J
    Sci Rep; 2023 Mar; 13(1):5046. PubMed ID: 36977706
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of Machine Learning Models for Classifying Upper Extremity Exercises Using Inertial Measurement Unit-Based Kinematic Data.
    Hua A; Chaudhari P; Johnson N; Quinton J; Schatz B; Buchner D; Hernandez ME
    IEEE J Biomed Health Inform; 2020 Sep; 24(9):2452-2460. PubMed ID: 32750927
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison between Accelerometer and Gyroscope in Predicting Level-Ground Running Kinematics by Treadmill Running Kinematics Using a Single Wearable Sensor.
    Chow DHK; Tremblay L; Lam CY; Yeung AWY; Cheng WHW; Tse PTW
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Subject-Specific Approach to Detect Fatigue-Related Changes in Spine Motion Using Wearable Sensors.
    Chan VCH; Beaudette SM; Smale KB; Beange KHE; Graham RB
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32384664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Validation of a model-based inverse kinematics approach based on wearable inertial sensors.
    Tagliapietra L; Modenese L; Ceseracciu E; Mazzà C; Reggiani M
    Comput Methods Biomech Biomed Engin; 2018 Dec; 21(16):834-844. PubMed ID: 30466324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimation of Knee Joint Forces in Sport Movements Using Wearable Sensors and Machine Learning.
    Stetter BJ; Ringhof S; Krafft FC; Sell S; Stein T
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fatigue Monitoring in Running Using Flexible Textile Wearable Sensors.
    Gholami M; Napier C; Patiño AG; Cuthbert TJ; Menon C
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 33003316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerometer-Based Identification of Fatigue in the Lower Limbs during Cyclical Physical Exercise: A Systematic Review.
    Marotta L; Scheltinga BL; van Middelaar R; Bramer WM; van Beijnum BF; Reenalda J; Buurke JH
    Sensors (Basel); 2022 Apr; 22(8):. PubMed ID: 35458993
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Wearable-Sensor System with AI Technology for Real-Time Biomechanical Feedback Training in Hammer Throw.
    Wang Y; Shan G; Li H; Wang L
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36617025
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.