These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 33671583)

  • 1. Multirate Processing with Selective Subbands and Machine Learning for Efficient Arrhythmia Classification.
    Qaisar SM; Mihoub A; Krichen M; Nisar H
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arrhythmia Diagnosis by Using Level-Crossing ECG Sampling and Sub-Bands Features Extraction for Mobile Healthcare.
    Mian Qaisar S; Fawad Hussain S
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32316133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A 2-D ECG compression method based on wavelet transform and modified SPIHT.
    Tai SC; Sun CC; Yan WC
    IEEE Trans Biomed Eng; 2005 Jun; 52(6):999-1008. PubMed ID: 15977730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Medical Decision Support System for Diagnosis of Heart Arrhythmia using DWT and Random Forests Classifier.
    Alickovic E; Subasi A
    J Med Syst; 2016 Apr; 40(4):108. PubMed ID: 26922592
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effective epileptic seizure detection by using level-crossing EEG sampling sub-bands statistical features selection and machine learning for mobile healthcare.
    Qaisar SM; Hussain SF
    Comput Methods Programs Biomed; 2021 May; 203():106034. PubMed ID: 33744752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arrhythmia detection using deep convolutional neural network with long duration ECG signals.
    Yıldırım Ö; Pławiak P; Tan RS; Acharya UR
    Comput Biol Med; 2018 Nov; 102():411-420. PubMed ID: 30245122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ECG signal compressor based on the selection of optimal threshold levels of discrete wavelet transform coefficients.
    Al-Ajlouni AF; Abo-Zahhad M; Ahmed SM; Schilling RJ
    J Med Eng Technol; 2008; 32(6):425-33. PubMed ID: 19005960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloud-based ECG monitoring using event-driven ECG acquisition and machine learning techniques.
    Mian Qaisar S; Subasi A
    Phys Eng Sci Med; 2020 Jun; 43(2):623-634. PubMed ID: 32524444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection of Atrial Fibrillation from Single Lead ECG Signal Using Multirate Cosine Filter Bank and Deep Neural Network.
    Ghosh SK; Tripathy RK; Paternina MRA; Arrieta JJ; Zamora-Mendez A; Naik GR
    J Med Syst; 2020 May; 44(6):114. PubMed ID: 32388733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arrhythmia Classification of ECG Signals Using Hybrid Features.
    Anwar SM; Gul M; Majid M; Alnowami M
    Comput Math Methods Med; 2018; 2018():1380348. PubMed ID: 30538768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KLT-based quality controlled compression of single-lead ECG.
    Blanchett T; Kember GC; Fenton GA
    IEEE Trans Biomed Eng; 1998 Jul; 45(7):942-5. PubMed ID: 9644904
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A joint QRS detection and data compression scheme for wearable sensors.
    Deepu CJ; Lian Y
    IEEE Trans Biomed Eng; 2015 Jan; 62(1):165-75. PubMed ID: 25073164
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach for arrhythmia classification using deep coded features and LSTM networks.
    Yildirim O; Baloglu UB; Tan RS; Ciaccio EJ; Acharya UR
    Comput Methods Programs Biomed; 2019 Jul; 176():121-133. PubMed ID: 31200900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-label Arrhythmia Classification from Fixed-length Compressed ECG Segments in Real-time Wearable ECG Monitoring.
    Cheng Y; Ye Y; Hou M; He W; Pan T
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():580-583. PubMed ID: 33018055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Arrhythmia Classification using Deep Learning and Machine Learning with Features Extracted from Waveform-based Signal Processing.
    Hsu PY; Cheng CK
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():292-295. PubMed ID: 33017986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ECG signal classification in wearable devices based on compressed domain.
    Hua J; Chu B; Zou J; Jia J
    PLoS One; 2023; 18(4):e0284008. PubMed ID: 37014879
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wavelet-based lossy-to-lossless ECG compression in a unified vector quantization framework.
    Miaou SG; Chao SN
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):539-43. PubMed ID: 15759584
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automated detection of shockable and non-shockable arrhythmia using novel wavelet-based ECG features.
    Sharma M; Singh S; Kumar A; San Tan R; Acharya UR
    Comput Biol Med; 2019 Dec; 115():103446. PubMed ID: 31627019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ECG arrhythmia detection in an inter-patient setting using Fourier decomposition and machine learning.
    Fatimah B; Singhal A; Singh P
    Med Eng Phys; 2024 Feb; 124():104102. PubMed ID: 38418030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient thresholding-based ECG compressors for high quality applications using cosine modulated filter banks.
    Hernando-Ramiro C; Blanco-Velasco M; Cruz-Roldán F; Pedroviejo-Benito F
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():7079-82. PubMed ID: 22255969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.