These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 33671601)

  • 1. An Ensemble Learning Solution for Predictive Maintenance of Wind Turbines Main Bearing.
    Beretta M; Julian A; Sepulveda J; Cusidó J; Porro O
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671601
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wind Turbine Main Bearing Fault Prognosis Based Solely on SCADA Data.
    Encalada-Dávila Á; Puruncajas B; Tutivén C; Vidal Y
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33806744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Fault Detection and Classification of Wind Turbines Using Stacking Classifier.
    Waqas Khan P; Byun YC
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of Wind Conditions on Wind Turbine Temperature Monitoring and Solution Based on Wind Condition Clustering and IGA-ELM.
    Hou Z; Zhuang S
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined mono- and multi-turbine approach for fault indicator synthesis and wind turbine monitoring using SCADA data.
    Lebranchu A; Charbonnier S; Bérenguer C; Prévost F
    ISA Trans; 2019 Apr; 87():272-281. PubMed ID: 30545768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vibration Analysis for Fault Detection of Wind Turbine Drivetrains-A Comprehensive Investigation.
    Teng W; Ding X; Tang S; Xu J; Shi B; Liu Y
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33804512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Space, Time, and Size Dependencies of Greenhouse Gas Payback Times of Wind Turbines in Northwestern Europe.
    Dammeier LC; Loriaux JM; Steinmann ZJN; Smits DA; Wijnant IL; van den Hurk B; Huijbregts MAJ
    Environ Sci Technol; 2019 Aug; 53(15):9289-9297. PubMed ID: 31269396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine.
    Yeh CH; Lin MH; Lin CH; Yu CE; Chen MJ
    Sensors (Basel); 2019 Apr; 19(7):. PubMed ID: 30965619
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning.
    Elasha F; Shanbr S; Li X; Mba D
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336974
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspects of structural health and condition monitoring of offshore wind turbines.
    Antoniadou I; Dervilis N; Papatheou E; Maguire AE; Worden K
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind Turbine Condition Monitoring Using the SSA-Optimized Self-Attention BiLSTM Network and Changepoint Detection Algorithm.
    Yan J; Liu Y; Li L; Ren X
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447722
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Multiscale Spatio-Temporal Convolutional Deep Belief Network for Sensor Fault Detection of Wind Turbine.
    Wang H; Wang H; Jiang G; Wang Y; Ren S
    Sensors (Basel); 2020 Jun; 20(12):. PubMed ID: 32599907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Research on Wind Turbine Fault Detection Based on the Fusion of ASL-CatBoost and TtRSA.
    Kong L; Liang H; Liu G; Liu S
    Sensors (Basel); 2023 Jul; 23(15):. PubMed ID: 37571525
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control and Supervision Requirements for Floating Hybrid Generator Systems.
    García E; Correcher A; Quiles E; Tamarit F; Morant F
    Int J Environ Res Public Health; 2022 Oct; 19(19):. PubMed ID: 36232078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Offshore and onshore wind turbine blade waste material forecast at a regional level in Europe until 2050.
    Lichtenegger G; Rentizelas AA; Trivyza N; Siegl S
    Waste Manag; 2020 Apr; 106():120-131. PubMed ID: 32203899
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wind Turbine Gearbox Condition Monitoring Based on Class of Support Vector Regression Models and Residual Analysis.
    Dhiman HS; Deb D; Carroll J; Muresan V; Unguresan ML
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-Driven Assessment of Wind Turbine Performance Decline with Age and Interpretation Based on Comparative Test Case Analysis.
    Astolfi D; Pandit R; Celesti L; Vedovelli M; Lombardi A; Terzi L
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590870
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Model-Agnostic Meta-Baseline Method for Few-Shot Fault Diagnosis of Wind Turbines.
    Liu X; Teng W; Liu Y
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Framework for Bidirectional Knowledge-Based Maintenance of Wind Turbines.
    Vives J; Palaci J; Heart J
    Comput Intell Neurosci; 2022; 2022():1020400. PubMed ID: 36507231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Emerging trends in vibration control of wind turbines: a focus on a dual control strategy.
    Staino A; Basu B
    Philos Trans A Math Phys Eng Sci; 2015 Feb; 373(2035):. PubMed ID: 25583867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.