These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 33671643)

  • 21. The use of augmented auditory feedback to improve arm reaching in stroke: a case series.
    Chen JL; Fujii S; Schlaug G
    Disabil Rehabil; 2016; 38(11):1115-1124. PubMed ID: 26314746
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Remedial Training of the Less-Impaired Arm in Chronic Stroke Survivors With Moderate to Severe Upper-Extremity Paresis Improves Functional Independence: A Pilot Study.
    Maenza C; Wagstaff DA; Varghese R; Winstein C; Good DC; Sainburg RL
    Front Hum Neurosci; 2021; 15():645714. PubMed ID: 33776672
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robotic-based ACTive somatoSENSory (Act.Sens) retraining on upper limb functions with chronic stroke survivors: study protocol for a pilot randomised controlled trial.
    Sidarta A; Lim YC; Kuah CWK; Loh YJ; Ang WT
    Pilot Feasibility Stud; 2021 Nov; 7(1):207. PubMed ID: 34782024
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robotic identification of kinesthetic deficits after stroke.
    Semrau JA; Herter TM; Scott SH; Dukelow SP
    Stroke; 2013 Dec; 44(12):3414-21. PubMed ID: 24193800
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bilateral Tactile Feedback-Enabled Training for Stroke Survivors Using Microsoft Kinect
    Orand A; Erdal Aksoy E; Miyasaka H; Weeks Levy C; Zhang X; Menon C
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31398957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relative independence of upper limb position sense and reaching in children with hemiparetic perinatal stroke.
    Kuczynski AM; Kirton A; Semrau JA; Dukelow SP
    J Neuroeng Rehabil; 2021 May; 18(1):80. PubMed ID: 33980254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Object manipulation improvements due to single session training outweigh the differences among stimulation sites during vibrotactile feedback.
    Stepp CE; Matsuoka Y
    IEEE Trans Neural Syst Rehabil Eng; 2011 Dec; 19(6):677-85. PubMed ID: 21984521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of auditory feedback differs according to side of hemiparesis: a comparative pilot study.
    Robertson JV; Hoellinger T; Lindberg P; Bensmail D; Hanneton S; Roby-Brami A
    J Neuroeng Rehabil; 2009 Dec; 6():45. PubMed ID: 20017935
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Attentional focus of feedback for improving performance of reach-to-grasp after stroke: a randomised crossover study.
    Durham KF; Sackley CM; Wright CC; Wing AM; Edwards MG; van Vliet P
    Physiotherapy; 2014 Jun; 100(2):108-15. PubMed ID: 23796803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vision of the upper limb fails to compensate for kinesthetic impairments in subacute stroke.
    Semrau JA; Herter TM; Scott SH; Dukelow SP
    Cortex; 2018 Dec; 109():245-259. PubMed ID: 30391879
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A composite robotic-based measure of upper limb proprioception.
    Kenzie JM; Semrau JA; Hill MD; Scott SH; Dukelow SP
    J Neuroeng Rehabil; 2017 Nov; 14(1):114. PubMed ID: 29132388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Brief Kinesthesia test is feasible and sensitive: a study in stroke.
    Borstad A; Nichols-Larsen DS
    Braz J Phys Ther; 2016; 20(1):81-6. PubMed ID: 26786083
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A robot-assisted sensorimotor training program can improve proprioception and motor function in stroke survivors.
    Elangovan N; Yeh IL; Holst-Wolf J; Konczak J
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():660-664. PubMed ID: 31374706
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Repeated training with augmentative vibrotactile feedback increases object manipulation performance.
    Stepp CE; An Q; Matsuoka Y
    PLoS One; 2012; 7(2):e32743. PubMed ID: 22384283
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of contralesional hemisphere in paretic arm reaching in patients with severe arm paresis due to stroke: A preliminary report.
    Mohapatra S; Harrington R; Chan E; Dromerick AW; Breceda EY; Harris-Love M
    Neurosci Lett; 2016 Mar; 617():52-8. PubMed ID: 26872851
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of bilateral reaching on affected arm motor control in stroke--with and without loading on unaffected arm.
    Chang JJ; Tung WL; Wu WL; Su FC
    Disabil Rehabil; 2006 Dec; 28(24):1507-16. PubMed ID: 17178614
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Usability Evaluation of a VibroTactile Feedback System in Stroke Subjects.
    Held JP; Klaassen B; van Beijnum BF; Luft AR; Veltink PH
    Front Bioeng Biotechnol; 2016; 4():98. PubMed ID: 28180128
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contralesional motor deficits after unilateral stroke reflect hemisphere-specific control mechanisms.
    Mani S; Mutha PK; Przybyla A; Haaland KY; Good DC; Sainburg RL
    Brain; 2013 Apr; 136(Pt 4):1288-303. PubMed ID: 23358602
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Robot-assisted training of the kinesthetic sense: enhancing proprioception after stroke.
    De Santis D; Zenzeri J; Casadio M; Masia L; Riva A; Morasso P; Squeri V
    Front Hum Neurosci; 2014; 8():1037. PubMed ID: 25601833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robot-Aided Upper-limb Proprioceptive Training in Three-Dimensional Space.
    Valdes BA; Khoshnam M; Neva JL; Menon C
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():121-126. PubMed ID: 31374617
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.