These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Biological Control of Botrytis cinerea: Interactions with Native Vineyard Yeasts from Washington State. Wang X; Glawe DA; Kramer E; Weller D; Okubara PA Phytopathology; 2018 Jun; 108(6):691-701. PubMed ID: 29334476 [TBL] [Abstract][Full Text] [Related]
3. Biocontrol of Non- Agarbati A; Canonico L; Pecci T; Romanazzi G; Ciani M; Comitini F Microorganisms; 2022 Jan; 10(2):. PubMed ID: 35208653 [TBL] [Abstract][Full Text] [Related]
5. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing post-harvest bunch rot of table grape. Parafati L; Vitale A; Restuccia C; Cirvilleri G Food Microbiol; 2015 May; 47():85-92. PubMed ID: 25583341 [TBL] [Abstract][Full Text] [Related]
6. Use of yeasts from different environments for the control of Penicillium expansum on table grapes at storage temperature. Rodriguez Assaf LA; Pedrozo LP; Nally MC; Pesce VM; Toro ME; Castellanos de Figueroa LI; Vazquez F Int J Food Microbiol; 2020 May; 320():108520. PubMed ID: 32035365 [TBL] [Abstract][Full Text] [Related]
7. Volatile organic compounds from Wickerhamomyces anomalus, Metschnikowia pulcherrima and Saccharomyces cerevisiae inhibit growth of decay causing fungi and control postharvest diseases of strawberries. Oro L; Feliziani E; Ciani M; Romanazzi G; Comitini F Int J Food Microbiol; 2018 Jan; 265():18-22. PubMed ID: 29107842 [TBL] [Abstract][Full Text] [Related]
8. Biocontrol potential of wine yeasts against four grape phytopathogenic fungi disclosed by time-course monitoring of inhibitory activities. Esteves M; Lage P; Sousa J; Centeno F; de Fátima Teixeira M; Tenreiro R; Mendes-Ferreira A Front Microbiol; 2023; 14():1146065. PubMed ID: 36960294 [TBL] [Abstract][Full Text] [Related]
9. Biocontrol strategies against Botrytis cinerea in viticulture: evaluating the efficacy and mode of action of selected winemaking yeast strains. Tsioka A; Psilioti Dourmousi K; Poulaki EG; Papoutsis G; Tjamos SE; Gkizi D Lett Appl Microbiol; 2024 Mar; 77(3):. PubMed ID: 38449374 [TBL] [Abstract][Full Text] [Related]
10. Biocontrol Ability and Action Mechanism of Starmerella bacillaris (Synonym Candida zemplinina) Isolated from Wine Musts against Gray Mold Disease Agent Botrytis cinerea on Grape and Their Effects on Alcoholic Fermentation. Lemos WJ; Bovo B; Nadai C; Crosato G; Carlot M; Favaron F; Giacomini A; Corich V Front Microbiol; 2016; 7():1249. PubMed ID: 27574517 [TBL] [Abstract][Full Text] [Related]
11. Indigenous Yeasts for the Biocontrol of Sepúlveda X; Vargas M; Vero S; Zapata N J Fungi (Basel); 2023 May; 9(5):. PubMed ID: 37233268 [TBL] [Abstract][Full Text] [Related]
12. Selection and use of pectinolytic yeasts for improving clarification and phenolic extraction in winemaking. Belda I; Conchillo LB; Ruiz J; Navascués E; Marquina D; Santos A Int J Food Microbiol; 2016 Apr; 223():1-8. PubMed ID: 26874860 [TBL] [Abstract][Full Text] [Related]
13. Antifungal activity of non-conventional yeasts against Maluleke E; Jolly NP; Patterton HG; Setati ME Front Microbiol; 2022; 13():986229. PubMed ID: 36081805 [TBL] [Abstract][Full Text] [Related]
14. Performance evaluation of volatile organic compounds by antagonistic yeasts immobilized on hydrogel spheres against gray, green and blue postharvest decays. Parafati L; Vitale A; Restuccia C; Cirvilleri G Food Microbiol; 2017 May; 63():191-198. PubMed ID: 28040168 [TBL] [Abstract][Full Text] [Related]
15. Contribution of non-Saccharomyces yeasts to wine volatile and sensory diversity: A study on Lachancea thermotolerans, Metschnikowia spp. and Starmerella bacillaris strains isolated in Italy. Binati RL; Lemos Junior WJF; Luzzini G; Slaghenaufi D; Ugliano M; Torriani S Int J Food Microbiol; 2020 Apr; 318():108470. PubMed ID: 31841784 [TBL] [Abstract][Full Text] [Related]
16. Yeasts isolated from figs (Ficus carica L.) as biocontrol agents of postharvest fruit diseases. Ruiz-Moyano S; Martín A; Villalobos MC; Calle A; Serradilla MJ; Córdoba MG; Hernández A Food Microbiol; 2016 Aug; 57():45-53. PubMed ID: 27052701 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial activity of Metschnikowia pulcherrima on wine yeasts. Oro L; Ciani M; Comitini F J Appl Microbiol; 2014 May; 116(5):1209-17. PubMed ID: 24443784 [TBL] [Abstract][Full Text] [Related]
18. The microbial ecology of wine grape berries. Barata A; Malfeito-Ferreira M; Loureiro V Int J Food Microbiol; 2012 Feb; 153(3):243-59. PubMed ID: 22189021 [TBL] [Abstract][Full Text] [Related]
19. Yeast biocontrol of fungal spoilage of pears stored at low temperature. Robiglio A; Sosa MC; Lutz MC; Lopes CA; Sangorrín MP Int J Food Microbiol; 2011 Jun; 147(3):211-6. PubMed ID: 21546110 [TBL] [Abstract][Full Text] [Related]
20. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production. Qin X; Xiao H; Cheng X; Zhou H; Si L Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]