BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33671870)

  • 1. Physical Mapping of the
    Rafael MS; Bridi LC; Sharakhov IV; Marinotti O; Sharakhova MV; Timoshevskiy V; Guimarães-Marques GM; Santos VS; da Silva CGN; Astolfi-Filho S; Tadei WP
    Insects; 2021 Feb; 12(2):. PubMed ID: 33671870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Physical Genome Mapping of Anopheles albimanus Corrected Scaffold Misassemblies and Identified Interarm Rearrangements in Genus Anopheles.
    Artemov GN; Peery AN; Jiang X; Tu Z; Stegniy VN; Sharakhova MV; Sharakhov IV
    G3 (Bethesda); 2017 Jan; 7(1):155-164. PubMed ID: 27821634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome.
    Artemov GN; Bondarenko SM; Naumenko AN; Stegniy VN; Sharakhova MV; Sharakhov IV
    BMC Genomics; 2018 Apr; 19(1):278. PubMed ID: 29688842
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salivary polytene chromosome map of Anopheles darlingi, the main vector of neotropical malaria.
    Rafael MS; Rohde C; Bridi LC; Valente Gaiesky VL; Tadei WP
    Am J Trop Med Hyg; 2010 Aug; 83(2):241-9. PubMed ID: 20682862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Update of the Anopheles gambiae PEST genome assembly.
    Sharakhova MV; Hammond MP; Lobo NF; Krzywinski J; Unger MF; Hillenmeyer ME; Bruggner RV; Birney E; Collins FH
    Genome Biol; 2007; 8(1):R5. PubMed ID: 17210077
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative physical genome mapping of malaria vectors Anopheles sinensis and Anopheles gambiae.
    Wei Y; Cheng B; Zhu G; Shen D; Liang J; Wang C; Wang J; Tang J; Cao J; Sharakhov IV; Xia A
    Malar J; 2017 Jun; 16(1):235. PubMed ID: 28583133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies.
    Waterhouse RM; Aganezov S; Anselmetti Y; Lee J; Ruzzante L; Reijnders MJMF; Feron R; Bérard S; George P; Hahn MW; Howell PI; Kamali M; Koren S; Lawson D; Maslen G; Peery A; Phillippy AM; Sharakhova MV; Tannier E; Unger MF; Zhang SV; Alekseyev MA; Besansky NJ; Chauve C; Emrich SJ; Sharakhov IV
    BMC Biol; 2020 Jan; 18(1):1. PubMed ID: 31898513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Maintenance of chromosome arm integrity between two Anopheles mosquito subgenera.
    Cornel AJ; Collins FH
    J Hered; 2000; 91(5):364-70. PubMed ID: 10994702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput physical mapping of chromosomes using automated in situ hybridization.
    George P; Sharakhova MV; Sharakhov IV
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A standard photomap of ovarian nurse cell chromosomes and inversion polymorphism in Anopheles beklemishevi.
    Artemov GN; Gordeev MI; Kokhanenko AA; Moskaev AV; Velichevskaya AI; Stegniy VN; Sharakhov IV; Sharakhova MV
    Parasit Vectors; 2018 Mar; 11(1):211. PubMed ID: 29587834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The physical gene Hsp70 map on polytene chromosomes of Anopheles darlingi from the Brazilian Amazon.
    Rafael MS; Tadei WP; Hunter FF
    Genetica; 2004 May; 121(1):89-94. PubMed ID: 15098741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A standard cytogenetic photomap for the mosquito Anopheles stephensi (Diptera: Culicidae): application for physical mapping.
    Sharakhova MV; Xia A; McAlister SI; Sharakhov IV
    J Med Entomol; 2006 Sep; 43(5):861-6. PubMed ID: 17017220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical Genome Mapping Using Fluorescence In Situ Hybridization with Mosquito Chromosomes.
    Sharakhova MV; Artemov GN; Timoshevskiy VA; Sharakhov IV
    Methods Mol Biol; 2019; 1858():177-194. PubMed ID: 30414118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A standard cytogenetic map for Anopheles sinensis and chromosome arm homology between the subgenera Anopheles and Cellia.
    Liang J; Sharakhova MV; Lan Q; Zhu H; Sharakhov IV; Xia A
    Med Vet Entomol; 2014 Aug; 28 Suppl 1(0 1):26-32. PubMed ID: 25171604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A standard photomap of the ovarian nurse cell chromosomes for the dominant malaria vector in Europe and Middle East Anopheles sacharovi.
    Artemov GN; Velichevskaya AI; Bondarenko SM; Karagyan GH; Aghayan SA; Arakelyan MS; Stegniy VN; Sharakhov IV; Sharakhova MV
    Malar J; 2018 Jul; 17(1):276. PubMed ID: 30060747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Method for in situ hybridization to polytene chromosomes from ovarian nurse cells of Anopheles gambiae (Diptera: Culicidae).
    Graziosi C; Sakai RK; Romans P; Miller LH; Wellems TE
    J Med Entomol; 1990 Sep; 27(5):905-12. PubMed ID: 2231626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GNBP domain of Anopheles darlingi: are polymorphic inversions and gene variation related to adaptive evolution?
    Bridi LC; Rafael MS
    Genetica; 2016 Feb; 144(1):99-106. PubMed ID: 26767379
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogenetic analysis of the GST family in Anopheles (Nyssorhynchus) darlingi.
    Azevedo-Júnior GM; Guimarães-Marques GM; Cegatti Bridi L; Christine Ohse K; Vicentini R; Tadei W; Rafael MS
    Acta Trop; 2014 Aug; 136():27-31. PubMed ID: 24713199
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescent in situ hybridization on mitotic chromosomes of mosquitoes.
    Timoshevskiy VA; Sharma A; Sharakhov IV; Sharakhova MV
    J Vis Exp; 2012 Sep; (67):e4215. PubMed ID: 23007640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ hybridization mapping of histone genes in Anopheles albimanus.
    Narang SK; Seawright JA
    J Am Mosq Control Assoc; 1993 Jun; 9(2):147-9. PubMed ID: 8350069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.