These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 33671964)

  • 1. Detecting Genetic Mobility Using a Transposon-Based Marker System in Gamma-Ray Irradiated Soybean Mutants.
    Hung NN; Kim DG; Lyu JI; Park KC; Kim JM; Kim JB; Ha BK; Kwon SJ
    Plants (Basel); 2021 Feb; 10(2):. PubMed ID: 33671964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of Genetic Mobility Using a Transposon-Based Marker System in Sorghum.
    Lyu JI; Jo YD; Ahn JW; Kim JB; Kwon SJ
    Methods Mol Biol; 2021; 2250():195-205. PubMed ID: 33900606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements.
    Zhang X; Jiang N; Feschotte C; Wessler SR
    Genetics; 2004 Feb; 166(2):971-86. PubMed ID: 15020481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a transposon-based marker system for mutation breeding in sorghum (Sorghum bicolor L.).
    Im SB; Kwon SJ; Ryu J; Jeong SW; Kim JB; Ahn JW; Kim SH; Jo YD; Choi HI; Kang SY
    Genet Mol Res; 2016 Sep; 15(3):. PubMed ID: 27706735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature inverted-repeat transposable elements (MITEs), derived insertional polymorphism as a tool of marker systems for molecular plant breeding.
    Venkatesh ; Nandini B
    Mol Biol Rep; 2020 Apr; 47(4):3155-3167. PubMed ID: 32162128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Miniature Inverted Repeat Transposable Element Insertions Provide a Source of Intron Length Polymorphism Markers in the Carrot (
    Stelmach K; Macko-Podgórni A; Machaj G; Grzebelus D
    Front Plant Sci; 2017; 8():725. PubMed ID: 28536590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.
    Nouroz F; Noreen S; Heslop-Harrison JS
    Mol Genet Genomics; 2015 Dec; 290(6):2297-312. PubMed ID: 26129767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MITE
    Adams FG; Brown MH
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30787115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Active miniature inverted-repeat transposable elements transposon in plants: a review].
    Hu B; Zhou M
    Sheng Wu Gong Cheng Xue Bao; 2018 Feb; 34(2):204-215. PubMed ID: 29424134
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of novel MITEs (miniature inverted-repeat transposable elements) in Coxiella burnetii: implications for protein and small RNA evolution.
    Wachter S; Raghavan R; Wachter J; Minnick MF
    BMC Genomics; 2018 Apr; 19(1):247. PubMed ID: 29642859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. P elements and MITE relatives in the whole genome sequence of Anopheles gambiae.
    Quesneville H; Nouaud D; Anxolabéhère D
    BMC Genomics; 2006 Aug; 7():214. PubMed ID: 16919158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica.
    Oki N; Yano K; Okumoto Y; Tsukiyama T; Teraishi M; Tanisaka T
    Genes Genet Syst; 2008 Aug; 83(4):321-9. PubMed ID: 18931457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discovery and genome-wide characterization of a novel miniature inverted repeat transposable element reveal genome-specific distribution in Glycine.
    Yıldız Akkamış H; Kaya EC; Tek AL
    Genes Genomics; 2024 Apr; ():. PubMed ID: 38676850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae.
    Dai S; Hou J; Long Y; Wang J; Li C; Xiao Q; Jiang X; Zou X; Zou J; Meng J
    BMC Plant Biol; 2015 Jun; 15():149. PubMed ID: 26084405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide analyses of miniature inverted-repeat transposable elements reveals new insights into the evolution of the Triticum-Aegilops group.
    Keidar-Friedman D; Bariah I; Kashkush K
    PLoS One; 2018; 13(10):e0204972. PubMed ID: 30356268
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of miniature inverted-repeat transposable elements (MITEs) and long terminal repeat (LTR) retrotransposons in six Citrus species.
    Liu Y; Tahir Ul Qamar M; Feng JW; Ding Y; Wang S; Wu G; Ke L; Xu Q; Chen LL
    BMC Plant Biol; 2019 Apr; 19(1):140. PubMed ID: 30987586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transposable element (TE) display and rapid detection of TE insertion polymorphism in the Anopheles gambiae species complex.
    Biedler J; Qi Y; Holligan D; della Torre A; Wessler S; Tu Z
    Insect Mol Biol; 2003 Jun; 12(3):211-6. PubMed ID: 12752653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transposition of the Tourist-MITE mPing in yeast: an assay that retains key features of catalysis by the class 2 PIF/Harbinger superfamily.
    Hancock CN; Zhang F; Wessler SR
    Mob DNA; 2010 Feb; 1(1):5. PubMed ID: 20226077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In planta mobilization of mPing and its putative autonomous element Pong in rice by hydrostatic pressurization.
    Lin X; Long L; Shan X; Zhang S; Shen S; Liu B
    J Exp Bot; 2006; 57(10):2313-23. PubMed ID: 16818484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Miniature inverted-repeat transposable elements: discovery, distribution, and activity.
    Fattash I; Rooke R; Wong A; Hui C; Luu T; Bhardwaj P; Yang G
    Genome; 2013 Sep; 56(9):475-86. PubMed ID: 24168668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.