BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 33671983)

  • 1. Nano-Interstice Driven Powerless Blood Plasma Extraction in a Membrane Filter Integrated Microfluidic Device.
    Kim J; Yoon J; Byun JY; Kim H; Han S; Kim J; Lee JH; Jo HS; Chung S
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33671983
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of Cell-Free Whole Blood Plasma Using a Dielectrophoresis-Based Microfluidic Device.
    Yang F; Zhang Y; Cui X; Fan Y; Xue Y; Miao H; Li G
    Biotechnol J; 2019 Mar; 14(3):e1800181. PubMed ID: 29952079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-driven filter-based blood plasma separator microfluidic chip for point-of-care testing.
    Madadi H; Casals-Terré J; Mohammadi M
    Biofabrication; 2015 May; 7(2):025007. PubMed ID: 26000798
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices.
    Park J; Han DH; Park JK
    Lab Chip; 2020 Apr; 20(7):1191-1203. PubMed ID: 32119024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsatile plasma filtration and cell-free DNA amplification using a water-head-driven point-of-care testing chip.
    Lee Y; Kim DM; Li Z; Kim DE; Kim SJ
    Lab Chip; 2018 Mar; 18(6):915-922. PubMed ID: 29445802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Automated Microfluidic System with Active Mixing Enables Rapid Analysis of Biomarkers in 5 μL of Whole Blood.
    Gonzalez-Suarez AM; Stybayeva G; Carey WA; Revzin A
    Anal Chem; 2022 Jul; 94(27):9706-9714. PubMed ID: 35604796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple and rapid method for blood plasma separation driven by capillary force with an application in protein detection.
    Gao Q; Chang Y; Deng Q; You H
    Anal Methods; 2020 May; 12(20):2560-2570. PubMed ID: 32930282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidics for COVID-19: From Current Work to Future Perspective.
    Li Q; Zhou X; Wang Q; Liu W; Chen C
    Biosensors (Basel); 2023 Jan; 13(2):. PubMed ID: 36831930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Microfluidic Device for Simultaneous Extraction of Plasma, Red Blood Cells, and On-Chip White Blood Cell Trapping.
    Kuan DH; Wu CC; Su WY; Huang NT
    Sci Rep; 2018 Oct; 8(1):15345. PubMed ID: 30337656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetic nanoparticles in microfluidics-based diagnostics: an appraisal.
    Sharma S; Bhatia V
    Nanomedicine (Lond); 2021 Jun; 16(15):1329-1342. PubMed ID: 34027677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated solid phase DNA extraction on a lab-on-a-disc with two-degrees of freedom instrumentation.
    Carthy É; Hughes B; Higgins E; Early P; Merne C; Walsh D; Parle-McDermott A; Kinahan DJ
    Anal Chim Acta; 2023 Nov; 1280():341859. PubMed ID: 37858565
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic flow cytometry for blood-based biomarker analysis.
    Zhang Y; Zhao Y; Cole T; Zheng J; Bayinqiaoge ; Guo J; Tang SY
    Analyst; 2022 Jun; 147(13):2895-2917. PubMed ID: 35611964
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated microfluidic system for multi-target biochemical analysis of a single drop of blood.
    Zuo ZQ; Pan JZ; Fang Q
    Talanta; 2022 Nov; 249():123585. PubMed ID: 35688079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil.
    Ueland M; Blanes L; Taudte RV; Stuart BH; Cole N; Willis P; Roux C; Doble P
    J Chromatogr A; 2016 Mar; 1436():28-33. PubMed ID: 26850317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lab-on-Paper Devices for Diagnosis of Human Diseases Using Urine Samples-A Review.
    Tai WC; Chang YC; Chou D; Fu LM
    Biosensors (Basel); 2021 Aug; 11(8):. PubMed ID: 34436062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-Dimensional Microporous Hollow Fiber Membrane Microfluidic Device Integrated with Selective Separation and Capillary Self-Driven for Point-of-Care Testing.
    Wu H; Ma Z; Wei C; Jiang M; Hong X; Li Y; Chen D; Huang X
    Anal Chem; 2020 May; 92(9):6358-6365. PubMed ID: 32250102
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design, fabrication and characterization of nano-filters in silicon microfluidic channels based on MEMS technology.
    Chen X; Cui D; Chen J
    Electrophoresis; 2009 Sep; 30(18):3168-73. PubMed ID: 19722199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roll-to-Roll Manufacturing of Integrated Immunodetection Sensors.
    Liedert C; Rannaste L; Kokkonen A; Huttunen OH; Liedert R; Hiltunen J; Hakalahti L
    ACS Sens; 2020 Jul; 5(7):2010-2017. PubMed ID: 32469200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precise and convenient size barcode on microfluidic chip for multiplex biomarker detection.
    Tang M; Chen J; Lei J; Ai Z; Liu F; Hong SL; Liu K
    Analyst; 2021 Sep; 146(19):5892-5897. PubMed ID: 34494037
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An integrated lab-on-a-chip-based electrochemical biosensor for rapid and sensitive detection of cancer biomarkers.
    Uludag Y; Narter F; Sağlam E; Köktürk G; Gök MY; Akgün M; Barut S; Budak S
    Anal Bioanal Chem; 2016 Nov; 408(27):7775-7783. PubMed ID: 27562751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.