These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
197 related articles for article (PubMed ID: 33672161)
1. Development of a Virtual Reality Simulator for an Intelligent Robotic System Used in Ankle Rehabilitation. Covaciu F; Pisla A; Iordan AE Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672161 [TBL] [Abstract][Full Text] [Related]
2. Connected Elbow Exoskeleton System for Rehabilitation Training Based on Virtual Reality and Context-Aware. de la Iglesia DH; Mendes AS; González GV; Jiménez-Bravo DM; de Paz Santana JF Sensors (Basel); 2020 Feb; 20(3):. PubMed ID: 32041156 [TBL] [Abstract][Full Text] [Related]
3. Virtual Reality Simulator Systems in Robotic Surgical Training. Mangano A; Gheza F; Giulianotti PC Surg Technol Int; 2018 Jun; 32():19-23. PubMed ID: 29689588 [TBL] [Abstract][Full Text] [Related]
4. A Comparison of Robotic Simulation Performance on Basic Virtual Reality Skills: Simulator Subjective Versus Objective Assessment Tools. Dubin AK; Smith R; Julian D; Tanaka A; Mattingly P J Minim Invasive Gynecol; 2017; 24(7):1184-1189. PubMed ID: 28757439 [TBL] [Abstract][Full Text] [Related]
5. The efficacy of virtual reality assisted versus traditional rehabilitation intervention on individuals with functional ankle instability: a pilot randomized controlled trial. Kim K; Choi B; Lim W Disabil Rehabil Assist Technol; 2019 Apr; 14(3):276-280. PubMed ID: 29385840 [TBL] [Abstract][Full Text] [Related]
6. A comparative analysis and guide to virtual reality robotic surgical simulators. Julian D; Tanaka A; Mattingly P; Truong M; Perez M; Smith R Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 29125206 [TBL] [Abstract][Full Text] [Related]
7. Current state of virtual reality simulation in robotic surgery training: a review. Bric JD; Lumbard DC; Frelich MJ; Gould JC Surg Endosc; 2016 Jun; 30(6):2169-78. PubMed ID: 26304107 [TBL] [Abstract][Full Text] [Related]
8. Integration of Virtual Reality in the Control System of an Innovative Medical Robot for Single-Incision Laparoscopic Surgery. Covaciu F; Crisan N; Vaida C; Andras I; Pusca A; Gherman B; Radu C; Tucan P; Al Hajjar N; Pisla D Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420568 [TBL] [Abstract][Full Text] [Related]
9. Mixed-reality assistive robotic power chair simulator for Parkinson's tremor testing. Meyer RT; Sergeeva Y Med Eng Phys; 2020 Sep; 83():142-147. PubMed ID: 32507417 [TBL] [Abstract][Full Text] [Related]
10. A Systematic Review of Virtual Reality Simulators for Robot-assisted Surgery. Moglia A; Ferrari V; Morelli L; Ferrari M; Mosca F; Cuschieri A Eur Urol; 2016 Jun; 69(6):1065-80. PubMed ID: 26433570 [TBL] [Abstract][Full Text] [Related]
11. Can a virtual reality surgical simulation training provide a self-driven and mentor-free skills learning? Investigation of the practical influence of the performance metrics from the virtual reality robotic surgery simulator on the skill learning and associated cognitive workloads. Lee GI; Lee MR Surg Endosc; 2018 Jan; 32(1):62-72. PubMed ID: 28634632 [TBL] [Abstract][Full Text] [Related]
12. Upper limb rehabilitation system based on virtual reality for breast cancer patients: Development and usability study. Zhou Z; Li J; Wang H; Luan Z; Li Y; Peng X PLoS One; 2021; 16(12):e0261220. PubMed ID: 34910786 [TBL] [Abstract][Full Text] [Related]
13. SmartSIM - a virtual reality simulator for laparoscopy training using a generic physics engine. Khan ZA; Kamal N; Hameed A; Mahmood A; Zainab R; Sadia B; Mansoor SB; Hasan O Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27671920 [TBL] [Abstract][Full Text] [Related]
14. Increasing patient engagement during virtual reality-based motor rehabilitation. Zimmerli L; Jacky M; Lünenburger L; Riener R; Bolliger M Arch Phys Med Rehabil; 2013 Sep; 94(9):1737-46. PubMed ID: 23500181 [TBL] [Abstract][Full Text] [Related]
15. Virtual Reality-Based Framework to Simulate Control Algorithms for Robotic Assistance and Rehabilitation Tasks through a Standing Wheelchair. Ortiz JS; Palacios-Navarro G; Andaluz VH; Guevara BS Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372320 [TBL] [Abstract][Full Text] [Related]
16. Upper limb rehabilitation after spinal cord injury: a treatment based on a data glove and an immersive virtual reality environment. Dimbwadyo-Terrer I; Trincado-Alonso F; de Los Reyes-Guzmán A; Aznar MA; Alcubilla C; Pérez-Nombela S; Del Ama-Espinosa A; Polonio-López B; Gil-Agudo Á Disabil Rehabil Assist Technol; 2016 Aug; 11(6):462-7. PubMed ID: 26181226 [TBL] [Abstract][Full Text] [Related]
17. Virtual reality simulation of robotic transsphenoidal brain tumor resection: Evaluating dynamic motion scaling in a master-slave system. Heredia-Pérez SA; Harada K; Padilla-Castañeda MA; Marques-Marinho M; Márquez-Flores JA; Mitsuishi M Int J Med Robot; 2019 Feb; 15(1):e1953. PubMed ID: 30117272 [TBL] [Abstract][Full Text] [Related]
18. Outcomes of a virtual-reality simulator-training programme on basic surgical skills in robot-assisted laparoscopic surgery. Phé V; Cattarino S; Parra J; Bitker MO; Ambrogi V; Vaessen C; Rouprêt M Int J Med Robot; 2017 Jun; 13(2):. PubMed ID: 26928974 [TBL] [Abstract][Full Text] [Related]
19. Interactive Virtual Ankle Movement Controlled by Wrist sEMG Improves Motor Imagery: An Exploratory Study. Xiao Y; Bai H; Gao Y; Hu B; Zheng J; Cai X; Rao J; Li X; Hao A IEEE Trans Vis Comput Graph; 2024 Aug; 30(8):5507-5524. PubMed ID: 37432832 [TBL] [Abstract][Full Text] [Related]
20. Physiological Gait versus Gait in VR on Multidirectional Treadmill-Comparative Analysis. Jochymczyk-Woźniak K; Nowakowska K; Polechoński J; Sładczyk S; Michnik R Medicina (Kaunas); 2019 Aug; 55(9):. PubMed ID: 31443382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]