BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 33672194)

  • 1. Self-Powered Wireless Sensor Using a Pressure Fluctuation Energy Harvester.
    Aranda JJ; Bader S; Oelmann B
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Powered Synchronized Switching Interface Circuit for Piezoelectric Footstep Energy Harvesting.
    Ben Ammar M; Sahnoun S; Fakhfakh A; Viehweger C; Kanoun O
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal energy harvester powered piezoresistive pressure sensor system with wireless operation for nuclear reactor application.
    Aparna J; Philip S; Topkar A
    Rev Sci Instrum; 2019 Apr; 90(4):044705. PubMed ID: 31042987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical and Experimental Investigation of a Rotational Magnetic Couple Piezoelectric Energy Harvester.
    Sun F; Dong R; Zhou R; Xu F; Mei X
    Micromachines (Basel); 2022 Jun; 13(6):. PubMed ID: 35744550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A wind energy powered wireless temperature sensor node.
    Zhang C; He XF; Li SY; Cheng YQ; Rao Y
    Sensors (Basel); 2015 Feb; 15(3):5020-31. PubMed ID: 25734649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid acoustic energy harvesting using combined electromagnetic and piezoelectric conversion.
    Khan FU; Izhar
    Rev Sci Instrum; 2016 Feb; 87(2):025003. PubMed ID: 26931884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Self-Powered Engine Health Monitoring System Based on L-Shaped Wideband Piezoelectric Energy Harvester.
    Shi S; Yue Q; Zhang Z; Yuan J; Zhou J; Zhang X; Lu S; Luo X; Shi C; Yu H
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30487394
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Vibration Energy Harvester and Power Management Solution for Battery-Free Operation of Wireless Sensor Nodes.
    Rodriguez JC; Nico V; Punch J
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31480410
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers.
    Koven R; Mills M; Gale R; Aksak B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributed Review: Recent developments in acoustic energy harvesting for autonomous wireless sensor nodes applications.
    Khan FU; Khattak MU
    Rev Sci Instrum; 2016 Feb; 87(2):021501. PubMed ID: 26931827
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Microbial Fuel Cells⁻Based Energy Harvester System for Self-powered IoT Applications.
    Osorio de la Rosa E; Vázquez Castillo J; Carmona Campos M; Barbosa Pool GR; Becerra Nuñez G; Castillo Atoche A; Ortegón Aguilar J
    Sensors (Basel); 2019 Mar; 19(6):. PubMed ID: 30897710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Development of a Lead-Freepiezoelectric Energy Harvester for Wideband, Low Frequency, and Low Amplitude Vibrations.
    Kumari N; Rakotondrabe M
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ePave: A Self-Powered Wireless Sensor for Smart and Autonomous Pavement.
    Xiao J; Zou X; Xu W
    Sensors (Basel); 2017 Sep; 17(10):. PubMed ID: 28954430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Attachable Electromagnetic Energy Harvester Driven Wireless Sensing System Demonstrating Milling-Processes and Cutter-Wear/Breakage-Condition Monitoring.
    Chung TK; Yeh PC; Lee H; Lin CM; Tseng CY; Lo WT; Wang CM; Wang WC; Tu CJ; Tasi PY; Chang JW
    Sensors (Basel); 2016 Feb; 16(3):269. PubMed ID: 26907297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electric Power Self-Supply Module for WSN Sensor Node Based on MEMS Vibration Energy Harvester.
    Zhang W; Dong Y; Tan Y; Zhang M; Qian X; Wang X
    Micromachines (Basel); 2018 Apr; 9(4):. PubMed ID: 30424095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Subcutaneous Solar Energy Harvesting for Self-Powered Wireless Implantable Sensor Systems.
    Wu T; Redoute JM; Yuce MR
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4657-4660. PubMed ID: 30441389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Simple Wireless Sensor Node System for Electricity Monitoring Applications: Design, Integration, and Testing with Different Piezoelectric Energy Harvesters.
    Yang Z; Zarabi S; Fernandes E; Rua-Taborda MI; Debéda H; Salehian A; Nairn D; Wei L
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400161
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and Development of a Broadband Vibration Energy Harvester Suitable for Tractor Exhaust Cylinder Vibration.
    Ma X; Zhou T; Gong L; Zhang X; Yao F; Wang C
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616884
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A self-powered wireless motion sensor based on a high-surface area reverse electrowetting-on-dielectric energy harvester.
    Tasneem NT; Biswas DK; Adhikari PR; Gunti A; Patwary AB; Reid RC; Mahbub I
    Sci Rep; 2022 Mar; 12(1):3782. PubMed ID: 35260661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Bootstrapped Comparator-Switched Active Rectifying Circuit for Wirelessly Powered Integrated Miniaturized Energy Sensing Systems.
    Gong CA; Li SW; Shiue MT
    Sensors (Basel); 2019 Oct; 19(21):. PubMed ID: 31671602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.