These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 33672452)

  • 1. Grasp to See-Object Classification Using Flexion Glove with Support Vector Machine.
    Yu SH; Chang JS; Tsai CD
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672452
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glove-Net: Enhancing Grasp Classification with Multisensory Data and Deep Learning Approach.
    Pratap S; Narayan J; Hatta Y; Ito K; Hazarika SM
    Sensors (Basel); 2024 Jul; 24(13):. PubMed ID: 39001157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning the signatures of the human grasp using a scalable tactile glove.
    Sundaram S; Kellnhofer P; Li Y; Zhu JY; Torralba A; Matusik W
    Nature; 2019 May; 569(7758):698-702. PubMed ID: 31142856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the Design and Performance of a Glove Based on the FBG Array for Hand Posture Sensing.
    Rao H; Luo B; Wu D; Yi P; Chen F; Shi S; Zou X; Chen Y; Zhao M
    Sensors (Basel); 2023 Oct; 23(20):. PubMed ID: 37896588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Turntable Setup for Testing Visual and Tactile Grasping Movements in Non-human Primates.
    Buchwald D; Schaffelhofer S; Dörge M; Dann B; Scherberger H
    Front Behav Neurosci; 2021; 15():648483. PubMed ID: 34113241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of the intention to grasp during reach movements.
    de Vries JC; van Ommeren AL; Prange-Lasonder GP; Rietman JS; Veltink PH
    J Rehabil Assist Technol Eng; 2018; 5():2055668317752850. PubMed ID: 31191924
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Grasping an object naturally or with a tool: are these tasks guided by a common motor representation?
    Gentilucci M; Roy AC; Stefanini S
    Exp Brain Res; 2004 Aug; 157(4):496-506. PubMed ID: 15007584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of object shape and visual feedback on hand configuration during grasping.
    Schettino LF; Adamovich SV; Poizner H
    Exp Brain Res; 2003 Jul; 151(2):158-66. PubMed ID: 12783144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stable Grasp Control With a Robotic Exoskeleton Glove.
    Vanteddu T; Ben-Tzvi P
    J Mech Robot; 2020 Dec; 12(6):061015. PubMed ID: 34168720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimating the Orientation of Objects from Tactile Sensing Data Using Machine Learning Methods and Visual Frames of Reference.
    Prado da Fonseca V; Alves de Oliveira TE; Petriu EM
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31108951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finger control in the tripod grasp.
    Gentilucci M; Caselli L; Secchi C
    Exp Brain Res; 2003 Apr; 149(3):351-60. PubMed ID: 12632237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of object shape and center of mass on grasp and gaze.
    Desanghere L; Marotta JJ
    Front Psychol; 2015; 6():1537. PubMed ID: 26528207
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment.
    Sadarangani GP; Jiang X; Simpson LA; Eng JJ; Menon C
    Front Bioeng Biotechnol; 2017; 5():42. PubMed ID: 28798912
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vision-Based Human-Machine Interface for an Assistive Robotic Exoskeleton Glove.
    Guo Y; Xu W; Ben-Tzvi P
    Res Sq; 2023 Aug; ():. PubMed ID: 37693405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparing classification techniques for identification of grasped objects.
    Nogueira D; Abreu P; Restivo MT
    Biomed Eng Online; 2019 Mar; 18(1):21. PubMed ID: 30845959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of grasping movements made by healthy subjects in a 3-dimensional immersive virtual versus physical environment.
    Magdalon EC; Michaelsen SM; Quevedo AA; Levin MF
    Acta Psychol (Amst); 2011 Sep; 138(1):126-34. PubMed ID: 21684505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and comprehensive evaluation of a new spring-steel-driven glove for grasping assistance during activities of daily living.
    Chizhik D; Hejrati B
    Proc Inst Mech Eng H; 2022 Feb; 236(2):259-268. PubMed ID: 34425685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An instrumented glove for grasp specification in virtual-reality-based point-and-direct telerobotics.
    Yun MH; Cannon D; Freivalds A; Thomas G
    IEEE Trans Syst Man Cybern B Cybern; 1997 Oct; 27(5):835-46. PubMed ID: 11542952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decoding the activity of grasping neurons recorded from the ventral premotor area F5 of the macaque monkey.
    Carpaneto J; Umiltà MA; Fogassi L; Murata A; Gallese V; Micera S; Raos V
    Neuroscience; 2011 Aug; 188():80-94. PubMed ID: 21575688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.