These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 33672665)

  • 1. Reactivity and Pozzolanic Properties of Biomass Ashes Generated by Wheat and Soybean Straw Combustion.
    Šupić S; Malešev M; Radonjanin V; Bulatović V; Milović T
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A review on sustainable use of agricultural straw and husk biomass ashes: Transitioning towards low carbon economy.
    Adhikary SK; Ashish DK; Rudžionis Ž
    Sci Total Environ; 2022 Sep; 838(Pt 3):156407. PubMed ID: 35660583
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating Optimum Conditions for Developing Pozzolanic Ashes from Organic Wastes as Cement Replacing Materials.
    Zaffar S; Kumar A; Memon NA; Kumar R; Saand A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Incorporation of Wheat Straw Ash as Partial Sand Replacement for Production of Eco-Friendly Concrete.
    Memon SA; Javed U; Haris M; Khushnood RA; Kim J
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33924127
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental perspectives of recycling various combustion ashes in cement production - A review.
    Yin K; Ahamed A; Lisak G
    Waste Manag; 2018 Aug; 78():401-416. PubMed ID: 32559927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Rice Husk Ash as Supplementary Cementitious Material after Production in the Field and in the Lab.
    Thiedeitz M; Schmidt W; Härder M; Kränkel T
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32998325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A study on the strength and durability characteristics of fiber-reinforced recycled aggregate concrete modified with supplementary cementitious material.
    Zaid O; Althoey F; García RM; de Prado-Gil J; Alsulamy S; Abuhussain MA
    Heliyon; 2023 Sep; 9(9):e19978. PubMed ID: 37809756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feasibility of Using New Sustainable Mineral Additions for the Manufacture of Eco-Cements.
    Moreno S; Rosales M; Rosales J; Agrela F; Díaz-López JL
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-of-Life Materials Used as Supplementary Cementitious Materials in the Concrete Industry.
    Nicoara AI; Stoica AE; Vrabec M; Šmuc Rogan N; Sturm S; Ow-Yang C; Gulgun MA; Bundur ZB; Ciuca I; Vasile BS
    Materials (Basel); 2020 Apr; 13(8):. PubMed ID: 32331388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agricultural Solid Waste as Source of Supplementary Cementitious Materials in Developing Countries.
    Chandra Paul S; Mbewe PBK; Kong SY; Šavija B
    Materials (Basel); 2019 Apr; 12(7):. PubMed ID: 30987183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation and use of biomass fly ash in cement-based materials.
    Rajamma R; Ball RJ; Tarelho LA; Allen GC; Labrincha JA; Ferreira VM
    J Hazard Mater; 2009 Dec; 172(2-3):1049-60. PubMed ID: 19699034
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical composition and physical properties of filter fly ashes from eight grate-fired biomass combustion plants.
    Lanzerstorfer C
    J Environ Sci (China); 2015 Apr; 30():191-7. PubMed ID: 25872727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomass Bottom Ash as Supplementary Cementitious Material: The Effect of Mechanochemical Pre-Treatment and Mineral Carbonation.
    Skevi L; Baki VA; Feng Y; Valderrabano M; Ke X
    Materials (Basel); 2022 Nov; 15(23):. PubMed ID: 36499851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization and valorization of biomass ashes.
    Trivedi NS; Mandavgane SA; Mehetre S; Kulkarni BD
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20243-20256. PubMed ID: 27443859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical composition and properties of ashes from combustion plants using Miscanthus as fuel.
    Lanzerstorfer C
    J Environ Sci (China); 2017 Apr; 54():178-183. PubMed ID: 28391927
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical aspects of biomass ashes utilization in soils: Composition, leachability, PAH and PCDD/F.
    Freire M; Lopes H; Tarelho LA
    Waste Manag; 2015 Dec; 46():304-15. PubMed ID: 26344913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.
    Lederer J; Trinkel V; Fellner J
    Waste Manag; 2017 Feb; 60():247-258. PubMed ID: 27815031
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quick monitoring of pozzolanic reactivity of waste ashes.
    Sinthaworn S; Nimityongskul P
    Waste Manag; 2009 May; 29(5):1526-31. PubMed ID: 19131237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of sewage sludge incineration ashes from multi-cyclones and baghouse dust filters as possible cement substitutes.
    Salihoglu G; Mardani-Aghabaglou A
    Environ Sci Pollut Res Int; 2021 Jan; 28(1):645-663. PubMed ID: 32820439
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Mechanical and Microstructural Properties and Global Warming Potential of Green Concrete with Wheat Straw Ash and Silica Fume.
    Khan K; Ishfaq M; Amin MN; Shahzada K; Wahab N; Faraz MI
    Materials (Basel); 2022 Apr; 15(9):. PubMed ID: 35591511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.