These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 33672813)

  • 41. Receptor-targeted nanocarriers for therapeutic delivery to cancer.
    Yu B; Tai HC; Xue W; Lee LJ; Lee RJ
    Mol Membr Biol; 2010 Oct; 27(7):286-98. PubMed ID: 21028937
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tumor extravasation and infiltration as barriers of nanomedicine for high efficacy: The current status and transcytosis strategy.
    Zhou Q; Dong C; Fan W; Jiang H; Xiang J; Qiu N; Piao Y; Xie T; Luo Y; Li Z; Liu F; Shen Y
    Biomaterials; 2020 May; 240():119902. PubMed ID: 32105817
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanodrug Delivery: Is the Enhanced Permeability and Retention Effect Sufficient for Curing Cancer?
    Nakamura Y; Mochida A; Choyke PL; Kobayashi H
    Bioconjug Chem; 2016 Oct; 27(10):2225-2238. PubMed ID: 27547843
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Selective Enhancing Blood Flow in Solid Tumor Tissue Is the Key for Achieving Satisfactory Delivery and Therapeutic Outcome of Nanodrugs via the EPR Effect.
    Wu J
    J Pers Med; 2022 Nov; 12(11):. PubMed ID: 36579542
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Accumulating nanoparticles by EPR: A route of no return.
    Ngoune R; Peters A; von Elverfeldt D; Winkler K; Pütz G
    J Control Release; 2016 Sep; 238():58-70. PubMed ID: 27448444
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo.
    Maeda H; Nakamura H; Fang J
    Adv Drug Deliv Rev; 2013 Jan; 65(1):71-9. PubMed ID: 23088862
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The link between infection and cancer: tumor vasculature, free radicals, and drug delivery to tumors via the EPR effect.
    Maeda H
    Cancer Sci; 2013 Jul; 104(7):779-89. PubMed ID: 23495730
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Liposomes of Quantum Dots Configured for Passive and Active Delivery to Tumor Tissue.
    Aizik G; Waiskopf N; Agbaria M; Ben-David-Naim M; Levi-Kalisman Y; Shahar A; Banin U; Golomb G
    Nano Lett; 2019 Sep; 19(9):5844-5852. PubMed ID: 31424944
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Polymer therapeutics and the EPR effect.
    Maeda H
    J Drug Target; 2017; 25(9-10):781-785. PubMed ID: 28988499
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Reduction-Responsive and Multidrug Deliverable Albumin Nanoparticles: An Antitumor Drug to Abraxane against Human Pancreatic Tumor-Bearing Mice.
    Hirakawa N; Ishima Y; Kinoshita R; Nakano R; Chuang VTG; Ando H; Shimizu T; Okuhira K; Maruyama T; Otagiri M; Ishida T
    ACS Appl Bio Mater; 2021 May; 4(5):4302-4309. PubMed ID: 35006842
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The Enhanced Permeability and Retention (EPR) Effect: The Significance of the Concept and Methods to Enhance Its Application.
    Wu J
    J Pers Med; 2021 Aug; 11(8):. PubMed ID: 34442415
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy.
    Shi Y; van der Meel R; Chen X; Lammers T
    Theranostics; 2020; 10(17):7921-7924. PubMed ID: 32685029
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review.
    Maeda H; Wu J; Sawa T; Matsumura Y; Hori K
    J Control Release; 2000 Mar; 65(1-2):271-84. PubMed ID: 10699287
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Parameters Affecting the Enhanced Permeability and Retention Effect: The Need for Patient Selection.
    Natfji AA; Ravishankar D; Osborn HMI; Greco F
    J Pharm Sci; 2017 Nov; 106(11):3179-3187. PubMed ID: 28669714
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Delivery of polymeric nanostars for molecular imaging and endoradiotherapy through the enhanced permeability and retention (EPR) effect.
    Goos JACM; Cho A; Carter LM; Dilling TR; Davydova M; Mandleywala K; Puttick S; Gupta A; Price WS; Quinn JF; Whittaker MR; Lewis JS; Davis TP
    Theranostics; 2020; 10(2):567-584. PubMed ID: 31903138
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantitative Analysis of the Enhanced Permeation and Retention (EPR) Effect.
    Wong AD; Ye M; Ulmschneider MB; Searson PC
    PLoS One; 2015; 10(5):e0123461. PubMed ID: 25938565
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Micro/nano-bubble-assisted ultrasound to enhance the EPR effect and potential theranostic applications.
    Duan L; Yang L; Jin J; Yang F; Liu D; Hu K; Wang Q; Yue Y; Gu N
    Theranostics; 2020; 10(2):462-483. PubMed ID: 31903132
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Tumor-selective delivery of macromolecular drugs via the EPR effect: background and future prospects.
    Maeda H
    Bioconjug Chem; 2010 May; 21(5):797-802. PubMed ID: 20397686
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoparticle Delivery and Tumor Vascular Normalization: The Chicken or The Egg?
    Mattheolabakis G; Mikelis CM
    Front Oncol; 2019; 9():1227. PubMed ID: 31799190
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Clinical Translation of Organic Nanomaterials for Cancer Therapy: A Focus on Polymeric Nanoparticles, Micelles, Liposomes and Exosomes.
    Palazzolo S; Bayda S; Hadla M; Caligiuri I; Corona G; Toffoli G; Rizzolio F
    Curr Med Chem; 2018; 25(34):4224-4268. PubMed ID: 28875844
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.