These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 33673025)

  • 21. Single step and mask-free 3D wax printing of microfluidic paper-based analytical devices for glucose and nitrite assays.
    Chiang CK; Kurniawan A; Kao CY; Wang MJ
    Talanta; 2019 Mar; 194():837-845. PubMed ID: 30609613
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Continuous-Ink, Multiplexed Pen-Plotter Approach for Low-Cost, High-Throughput Fabrication of Paper-Based Microfluidics.
    Amin R; Ghaderinezhad F; Li L; Lepowsky E; Yenilmez B; Knowlton S; Tasoglu S
    Anal Chem; 2017 Jun; 89(12):6351-6357. PubMed ID: 28598152
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Porous Cellulose Substrate Study to Improve the Performance of Diffusion-Based Ionic Strength Sensors.
    Khosravi H; Mehrdel P; Martínez JAL; Casals-Terré J
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363629
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laser-induced photo-polymerisation for creation of paper-based fluidic devices.
    Sones CL; Katis IN; He PJ; Mills B; Namiq MF; Shardlow P; Ibsen M; Eason RW
    Lab Chip; 2014 Dec; 14(23):4567-74. PubMed ID: 25286149
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of NaOH Treatment on the Flexural Modulus of Hemp Core Reinforced Composites and on the Intrinsic Flexural Moduli of the Fibers.
    Serra-Parareda F; Espinach FX; Pelach MÀ; Méndez JA; Vilaseca F; Tarrés Q
    Polymers (Basel); 2020 Jun; 12(6):. PubMed ID: 32604815
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Capacitive platform for real-time wireless monitoring of liquid wicking in a paper strip.
    Ruiz-García I; Escobedo P; Ramos-Lorente CE; Erenas MM; Capitán-Vallvey LF; Carvajal MA; Palma AJ; López-Ruiz N
    Lab Chip; 2023 Sep; 23(18):4092-4103. PubMed ID: 37615614
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Materials for microfluidic chip fabrication.
    Ren K; Zhou J; Wu H
    Acc Chem Res; 2013 Nov; 46(11):2396-406. PubMed ID: 24245999
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Industrial hemp as a potential bioenergy crop in comparison with kenaf, switchgrass and biomass sorghum.
    Das L; Liu E; Saeed A; Williams DW; Hu H; Li C; Ray AE; Shi J
    Bioresour Technol; 2017 Nov; 244(Pt 1):641-649. PubMed ID: 28810219
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Complex Interactions Between Flowering Behavior and Fiber Quality in Hemp.
    Salentijn EMJ; Petit J; Trindade LM
    Front Plant Sci; 2019; 10():614. PubMed ID: 31156677
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of Microfluidic Paper-based Analytical Devices Fabricated by Four Different Methods.
    Komatsu T; Maeki M; Ishida A; Tani H; Tokeshi M
    Anal Sci; 2018; 34(1):39-44. PubMed ID: 29321455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Programmable diagnostic devices made from paper and tape.
    Martinez AW; Phillips ST; Nie Z; Cheng CM; Carrilho E; Wiley BJ; Whitesides GM
    Lab Chip; 2010 Oct; 10(19):2499-504. PubMed ID: 20672179
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of plasma treatment on chemical composition, structure and sorption properties of lignocellulosic hemp fibers (Cannabis sativa L.).
    Pejić BM; Kramar AD; Obradović BM; Kuraica MM; Žekić AA; Kostić MM
    Carbohydr Polym; 2020 May; 236():116000. PubMed ID: 32172834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Paper-based microfluidic devices by asymmetric calendaring.
    Oyola-Reynoso S; Frankiewicz C; Chang B; Chen J; Bloch JF; Thuo MM
    Biomicrofluidics; 2017 Jan; 11(1):014104. PubMed ID: 28798839
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Influence of Hemp Shives Size on Hygro-Thermal and Mechanical Properties of a Hemp-Lime Composite.
    Brzyski P; Gładecki M; Rumińska M; Pietrak K; Kubiś M; Łapka P
    Materials (Basel); 2020 Nov; 13(23):. PubMed ID: 33260830
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Review on microfluidic paper-based analytical devices towards commercialisation.
    Akyazi T; Basabe-Desmonts L; Benito-Lopez F
    Anal Chim Acta; 2018 Feb; 1001():1-17. PubMed ID: 29291790
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Chemically Patterned Microfluidic Paper-based Analytical Device (C-µPAD) for Point-of-Care Diagnostics.
    Lam T; Devadhasan JP; Howse R; Kim J
    Sci Rep; 2017 Apr; 7(1):1188. PubMed ID: 28446756
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Maximizing flow rate in single paper layer, rapid flow microfluidic paper-based analytical devices.
    Macleod Briongos I; Call ZD; Henry CS; Bark DL
    Microfluid Nanofluidics; 2023; 27(10):70. PubMed ID: 37719231
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Paper-based microfluidics: fabrication technique and dynamics of capillary-driven surface flow.
    Songok J; Tuominen M; Teisala H; Haapanen J; Mäkelä J; Kuusipalo J; Toivakka M
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20060-6. PubMed ID: 25336235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Water-based alkyl ketene dimer ink for user-friendly patterning in paper microfluidics.
    Hamidon NN; Hong Y; Salentijn GI; Verpoorte E
    Anal Chim Acta; 2018 Feb; 1000():180-190. PubMed ID: 29289307
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Instrument-free argentometric determination of chloride via trapezoidal distance-based microfluidic paper devices.
    Rahbar M; Paull B; Macka M
    Anal Chim Acta; 2019 Jul; 1063():1-8. PubMed ID: 30967173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.