BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 33673094)

  • 1. Nature of Carbon Black Reinforcement of Rubber: Perspective on the Original Polymer Nanocomposite.
    Robertson CG; Hardman NJ
    Polymers (Basel); 2021 Feb; 13(4):. PubMed ID: 33673094
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel percolation phenomena and mechanism of strengthening elastomers by nanofillers.
    Wang Z; Liu J; Wu S; Wang W; Zhang L
    Phys Chem Chem Phys; 2010 Mar; 12(12):3014-30. PubMed ID: 20449394
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elastomer Nanocomposites: Effect of Filler-Matrix and Filler-Filler Interactions.
    Bokobza L
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447545
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic Effect of Partial Replacement of Carbon Black by Palm Kernel Shell Biochar in Carboxylated Nitrile Butadiene Rubber Composites.
    Zainal Abidin Z; Mamauod SNL; Romli AZ; Sarkawi SS; Zainal NH
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reinforcement Mechanism of Carbon Black-Filled Rubber Nanocomposite as Revealed by Atomic Force Microscopy Nanomechanics.
    Liang X; Ito M; Nakajima K
    Polymers (Basel); 2021 Nov; 13(22):. PubMed ID: 34833221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber.
    Jiang C; Bo J; Xiao X; Zhang S; Wang Z; Yan G; Wu Y; Wong C; He H
    Waste Manag; 2020 Feb; 102():732-742. PubMed ID: 31805446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of networked hybridized nanoparticle reinforcement on the thermal conductivity and mechanical properties of natural rubber composites.
    Jayasinghe JMARB; De Silva RT; de Silva RM; de Silva KMN; Mantilaka MMMGPG; Silva VA
    RSC Adv; 2019 Jan; 9(2):636-644. PubMed ID: 35517593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular dynamics simulation for insight into microscopic mechanism of polymer reinforcement.
    Liu J; Wu S; Zhang L; Wang W; Cao D
    Phys Chem Chem Phys; 2011 Jan; 13(2):518-29. PubMed ID: 21052606
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In Situ Nanostress Visualization Method to Reveal the Micromechanical Mechanism of Nanocomposites by Atomic Force Microscopy.
    Liang X; Kojima T; Ito M; Amino N; Liu H; Koishi M; Nakajima K
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12414-12422. PubMed ID: 36852783
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common Origin of Filler Network Related Contributions to Reinforcement and Dissipation in Rubber Composites.
    Nagaraja SM; Henning S; Ilisch S; Beiner M
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372137
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulation of the impact of the surface topology of carbon black on the mechanical properties of elastomer nanocomposites.
    Zhang Z; Fang Y; Chen Q; Duan P; Wu X; Zhang L; Wu W; Liu J
    Phys Chem Chem Phys; 2023 Feb; 25(7):5602-5612. PubMed ID: 36727525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials.
    Xian W; Zhan YS; Maiti A; Saab AP; Li Y
    Polymers (Basel); 2024 May; 16(10):. PubMed ID: 38794580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The recovery of nano-sized carbon black filler structure and its contribution to stress recovery in rubber nanocomposites.
    Chen L; Wu L; Song L; Xia Z; Lin Y; Chen W; Li L
    Nanoscale; 2020 Dec; 12(48):24527-24542. PubMed ID: 33320147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Filler Functionalization on Filler-Embedded Natural Rubber/Ethylene-Propylene-Diene Monomer Composites.
    Lee SH; Park GW; Kim HJ; Chung K; Jang KS
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioinspired Engineering towards Tailoring Advanced Lignin/Rubber Elastomers.
    Wang H; Liu W; Huang J; Yang D; Qiu X
    Polymers (Basel); 2018 Sep; 10(9):. PubMed ID: 30960958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy.
    Magaletti F; Margani F; Monti A; Dezyani R; Prioglio G; Giese U; Barbera V; Galimberti MS
    Polymers (Basel); 2023 Jul; 15(14):. PubMed ID: 37514509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport characteristics of organic solvents through carbon nanotube filled styrene butadiene rubber nanocomposites: the influence of rubber-filler interaction, the degree of reinforcement and morphology.
    Abraham J; Maria HJ; George SC; Kalarikkal N; Thomas S
    Phys Chem Chem Phys; 2015 May; 17(17):11217-28. PubMed ID: 25829168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of Silane Coupling Agents on Filler Network Structure and Stress-Induced Particle Rearrangement in Elastomer Nanocomposites.
    Presto D; Meyerhofer J; Kippenbrock G; Narayanan S; Ilavsky J; Moctezuma S; Sutton M; Foster MD
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47891-47901. PubMed ID: 32933248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic Heterogeneity of Filler-Associated Interphases in Polymer Nanocomposites.
    Schneider H; Roos M; Golitsyn Y; Steiner K; Saalwächter K
    Macromol Rapid Commun; 2021 Jun; 42(11):e2100061. PubMed ID: 33759277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Nonequilibrium Model for Particle Networking/Jamming and Time-Dependent Dynamic Rheology of Filled Polymers.
    Robertson CG; Vaikuntam SR; Heinrich G
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.