These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 33673106)

  • 21. Fire retardant effects of polymer nanocomposites.
    Hull TR; Stec AA; Nazare S
    J Nanosci Nanotechnol; 2009 Jul; 9(7):4478-86. PubMed ID: 19916477
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances in Zinc Hydroxystannate-Based Flame Retardant Polymer Blends.
    Pan WH; Yang WJ; Wei CX; Hao LY; Lu HD; Yang W
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683847
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fire retardant performance, toxicity and combustion characteristics, and numerical evaluation of core materials for sandwich panels.
    Wi S; Yang S; Yun BY; Kang Y; Kim S
    Environ Pollut; 2022 Nov; 312():120067. PubMed ID: 36067974
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanical Properties of Polypropylene-Based Flame Retardant Composites by Surface Modification of Flame Retardants.
    Lee J; Park JH; Shim SB; Lee JE
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080598
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a UiO-66 Based Waterborne Flame-Retardant Coating for PC/ABS Material.
    Chen S; Zeng Y; Bi W; Zhuo H; Zhong H
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38276685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular Firefighting-How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy.
    Velencoso MM; Battig A; Markwart JC; Schartel B; Wurm FR
    Angew Chem Int Ed Engl; 2018 Aug; 57(33):10450-10467. PubMed ID: 29318752
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Mechanisms Summary and Potential Analysis of EPS as a Flame Retardant].
    Hao XD; Zhao ZC; Li J; Shi C; Wu YY
    Huan Jing Ke Xue; 2021 Jun; 42(6):2583-2594. PubMed ID: 34032058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Carbon Nanotube-Based Intumescent Flame Retardants Achieve High-Efficiency Flame Retardancy and Simultaneously Avoid Mechanical Property Loss.
    Qu Q; Xu J; Wang H; Yu Y; Dong Q; Zhang X; He Y
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987187
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Progress on Metal-Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials.
    Zhang J; Li Z; Qi XL; Wang DY
    Nanomicro Lett; 2020 Aug; 12(1):173. PubMed ID: 34138156
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sustainable Chitin Nanofibrils Provide Outstanding Flame-Retardant Nanopapers.
    Riehle F; Hoenders D; Guo J; Eckert A; Ifuku S; Walther A
    Biomacromolecules; 2019 Feb; 20(2):1098-1108. PubMed ID: 30615421
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Review of Environmentally Friendly Approaches in Fire Extinguishing: From Chemical Sciences to Innovations in Electrical Engineering.
    Yılmaz-Atay H; Wilk-Jakubowski JL
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335554
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Eco-Friendly One-Pot Supramolecular-Assembly of P-N Flame Retardant for Fire-Safe Epoxy Resin.
    Xiang S; Tang B; Feng J; Lin X; Liu F; Yang H; Feng X; Wan C
    Macromol Rapid Commun; 2023 Nov; 44(21):e2300358. PubMed ID: 37572054
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploration on structural rules of highly efficient flame retardant unsaturated polyester resins.
    Chu F; Qiu S; Zhang S; Xu Z; Zhou Y; Luo X; Jiang X; Song L; Hu W; Hu Y
    J Colloid Interface Sci; 2022 Feb; 608(Pt 1):142-157. PubMed ID: 34624762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The influence of poorly-/well-dispersed organo-montmorillonite on interfacial compatibility, fire retardancy and smoke suppression of polypropylene/intumescent flame retardant composite system.
    Yuan Y; Yu B; Wang W
    J Colloid Interface Sci; 2022 Sep; 622():367-377. PubMed ID: 35525140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent trends of phosphorus-containing flame retardants modified polypropylene composites processing.
    Zhang C; Jiang Y; Li S; Huang Z; Zhan XQ; Ma N; Tsai FC
    Heliyon; 2022 Nov; 8(11):e11225. PubMed ID: 36339758
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Replacing Harmful Flame Retardants with Biodegradable Starch-Based Materials in Polyethylene Formulations.
    Carvalho BO; Gonçalves LPC; Mendonça PV; Pereira JP; Serra AC; Coelho JFJ
    Polymers (Basel); 2023 Oct; 15(20):. PubMed ID: 37896321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Research and Application of Biomass-Based Wood Flame Retardants: A Review.
    Liang Y; Jian H; Deng C; Xu J; Liu Y; Park H; Wen M; Sun Y
    Polymers (Basel); 2023 Feb; 15(4):. PubMed ID: 36850233
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Properties of flame-retardant leaf fiber cement-based composites at high temperatures.
    Jiang D; Xu H; Lv S; Jiang D; Cui S; Sun S; Song X; He S; Zhang J
    Heliyon; 2022 Dec; 8(12):e12175. PubMed ID: 36561702
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Advances in Flame Retardant Poly(Lactic Acid).
    Tawiah B; Yu B; Fei B
    Polymers (Basel); 2018 Aug; 10(8):. PubMed ID: 30960801
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Basalt and Carbon Fillers on Fire Hazard, Thermal, and Mechanical Properties of EPDM Rubber Composites.
    Rybiński P; Syrek B; Marzec A; Szadkowski B; Kuśmierek M; Śliwka-Kaszyńska M; Mirkhodjaev UZ
    Materials (Basel); 2021 Sep; 14(18):. PubMed ID: 34576469
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.