These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

353 related articles for article (PubMed ID: 33673141)

  • 1. EMG-Based 3D Hand Motor Intention Prediction for Information Transfer from Human to Robot.
    Feleke AG; Bi L; Fei W
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33673141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Learning-Based Motion-Intention Prediction for End-Point Control of Upper-Limb-Assistive Robots.
    Yang S; Garg NP; Gao R; Yuan M; Noronha B; Ang WT; Accoto D
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asynchronous decoding of finger position and of EMG during precision grip using CM cell activity: application to robot control.
    Ouanezar S; Eskiizmirliler S; Maier MA
    J Integr Neurosci; 2011 Dec; 10(4):489-511. PubMed ID: 22262537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural network EMG classifier for functional hand grasp movements prediction.
    Gandolla M; Ferrante S; Ferrigno G; Baldassini D; Molteni F; Guanziroli E; Cotti Cottini M; Seneci C; Pedrocchi A
    J Int Med Res; 2017 Dec; 45(6):1831-1847. PubMed ID: 27677300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous and Proportional Control of Wrist and Hand Movements Based on a Neural-Driven Musculoskeletal Model.
    Li J; Yue S; Pan L
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3999-4007. PubMed ID: 37815968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Learning Scheme for EMG Based Decoding of Dexterous, In-Hand Manipulation Motions.
    Dwivedi A; Kwon Y; McDaid AJ; Liarokapis M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2205-2215. PubMed ID: 31443034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shoulder muscle activation pattern recognition based on sEMG and machine learning algorithms.
    Jiang Y; Chen C; Zhang X; Chen C; Zhou Y; Ni G; Muh S; Lemos S
    Comput Methods Programs Biomed; 2020 Dec; 197():105721. PubMed ID: 32882593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human Motion Intent Description Based on Bumpless Switching Mechanism for Rehabilitation Robot.
    Huang Y; Song R; Argha A; Celler BG; Savkin AV; Su SW
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():673-682. PubMed ID: 33729942
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wearable high-density EMG sleeve for complex hand gesture classification and continuous joint angle estimation.
    Tacca N; Dunlap C; Donegan SP; Hardin JO; Meyers E; Darrow MJ; Colachis Iv S; Gillman A; Friedenberg DA
    Sci Rep; 2024 Aug; 14(1):18564. PubMed ID: 39122791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing EMG-Based Human-Machine Interfaces for Estimating Continuous, Coordinated Movements.
    Pan L; Crouch DL; Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2145-2154. PubMed ID: 31478862
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of electromyography-driven robot-aided hand training with neuromuscular electrical stimulation on hand control performance after chronic stroke.
    Rong W; Tong KY; Hu XL; Ho SK
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):149-59. PubMed ID: 24377757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous and simultaneous estimation of finger kinematics using inputs from an EMG-to-muscle activation model.
    Ngeo JG; Tamei T; Shibata T
    J Neuroeng Rehabil; 2014 Aug; 11():122. PubMed ID: 25123024
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous motion decoding from EMG using independent component analysis and adaptive model training.
    Zhang Q; Xiong C; Chen W
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():5068-71. PubMed ID: 25571132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study.
    Cesqui B; Tropea P; Micera S; Krebs HI
    J Neuroeng Rehabil; 2013 Jul; 10():75. PubMed ID: 23855907
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The classification of movement intention through machine learning models: the identification of significant time-domain EMG features.
    Mohd Khairuddin I; Sidek SN; P P Abdul Majeed A; Mohd Razman MA; Ahmad Puzi A; Md Yusof H
    PeerJ Comput Sci; 2021; 7():e379. PubMed ID: 33817026
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Movement Performance of Human-Robot Cooperation Control Based on EMG-Driven Hill-Type and Proportional Models for an Ankle Power-Assist Exoskeleton Robot.
    Ao D; Song R; Gao J
    IEEE Trans Neural Syst Rehabil Eng; 2017 Aug; 25(8):1125-1134. PubMed ID: 27337719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An EMG-based robot control scheme robust to time-varying EMG signal features.
    Artemiadis PK; Kyriakopoulos KJ
    IEEE Trans Inf Technol Biomed; 2010 May; 14(3):582-8. PubMed ID: 20172839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hand Grasp Motion Intention Recognition Based on High-Density Electromyography in Chronic Stroke Patients.
    Feng J; Yang MJ; Kyeong S; Kim Y; Jo S; Park HS; Kim J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-4. PubMed ID: 38083148
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gaussian Process Autoregression for Simultaneous Proportional Multi-Modal Prosthetic Control With Natural Hand Kinematics.
    Xiloyannis M; Gavriel C; Thomik AAC; Faisal AA
    IEEE Trans Neural Syst Rehabil Eng; 2017 Oct; 25(10):1785-1801. PubMed ID: 28880183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.