These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
292 related articles for article (PubMed ID: 33673159)
1. Quantitative Assessment of 3D Printed Model Accuracy in Delineating Congenital Heart Disease. Lee S; Squelch A; Sun Z Biomolecules; 2021 Feb; 11(2):. PubMed ID: 33673159 [TBL] [Abstract][Full Text] [Related]
2. Clinical value of patient-specific three-dimensional printing of congenital heart disease: Quantitative and qualitative assessments. Lau IWW; Liu D; Xu L; Fan Z; Sun Z PLoS One; 2018; 13(3):e0194333. PubMed ID: 29561912 [TBL] [Abstract][Full Text] [Related]
3. Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects. White SC; Sedler J; Jones TW; Seckeler M Congenit Heart Dis; 2018 Nov; 13(6):1045-1049. PubMed ID: 30230245 [TBL] [Abstract][Full Text] [Related]
4. Three-Dimensional Congenital Heart Models Created With Free Software and a Desktop Printer: Assessment of Accuracy, Technical Aspects, and Clinical Use. Perens G; Chyu J; McHenry K; Yoshida T; Finn JP World J Pediatr Congenit Heart Surg; 2020 Nov; 11(6):797-801. PubMed ID: 33164685 [TBL] [Abstract][Full Text] [Related]
5. 3D Echocardiography Provides Highly Accurate 3D Printed Models in Congenital Heart Disease. Mowers KL; Fullerton JB; Hicks D; Singh GK; Johnson MC; Anwar S Pediatr Cardiol; 2021 Jan; 42(1):131-141. PubMed ID: 33083888 [TBL] [Abstract][Full Text] [Related]
6. Clinical Application and Multidisciplinary Assessment of Three Dimensional Printing in Double Outlet Right Ventricle With Remote Ventricular Septal Defect. Garekar S; Bharati A; Chokhandre M; Mali S; Trivedi B; Changela VP; Solanki N; Gaikwad S; Agarwal V World J Pediatr Congenit Heart Surg; 2016 May; 7(3):344-50. PubMed ID: 27142402 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional printing of intracardiac defects from three-dimensional echocardiographic images: feasibility and relative accuracy. Olivieri LJ; Krieger A; Loke YH; Nath DS; Kim PC; Sable CA J Am Soc Echocardiogr; 2015 Apr; 28(4):392-7. PubMed ID: 25660668 [TBL] [Abstract][Full Text] [Related]
8. Patient-specific 3D printed model of biliary ducts with congenital cyst. Allan A; Kealley C; Squelch A; Wong YH; Yeong CH; Sun Z Quant Imaging Med Surg; 2019 Jan; 9(1):86-93. PubMed ID: 30788249 [TBL] [Abstract][Full Text] [Related]
9. The usefulness of 3D printed heart models for medical student education in congenital heart disease. Karsenty C; Guitarte A; Dulac Y; Briot J; Hascoet S; Vincent R; Delepaul B; Vignaud P; Djeddai C; Hadeed K; Acar P BMC Med Educ; 2021 Sep; 21(1):480. PubMed ID: 34496844 [TBL] [Abstract][Full Text] [Related]
10. Usage of 3D models of tetralogy of Fallot for medical education: impact on learning congenital heart disease. Loke YH; Harahsheh AS; Krieger A; Olivieri LJ BMC Med Educ; 2017 Mar; 17(1):54. PubMed ID: 28284205 [TBL] [Abstract][Full Text] [Related]
11. Utilisation of three-dimensional printed heart models for operative planning of complex congenital heart defects. Olejník P; Nosal M; Havran T; Furdova A; Cizmar M; Slabej M; Thurzo A; Vitovic P; Klvac M; Acel T; Masura J Kardiol Pol; 2017; 75(5):495-501. PubMed ID: 28281732 [TBL] [Abstract][Full Text] [Related]
12. Use of rotational angiography in congenital cardiac catheterisations to generate three-dimensional-printed models. Seckeler MD; Boe BA; Barber BJ; Berman DP; Armstrong AK Cardiol Young; 2021 Sep; 31(9):1407-1411. PubMed ID: 33597057 [TBL] [Abstract][Full Text] [Related]
13. Utility of 3D Printed Cardiac Models for Medical Student Education in Congenital Heart Disease: Across a Spectrum of Disease Severity. Smerling J; Marboe CC; Lefkowitch JH; Pavlicova M; Bacha E; Einstein AJ; Naka Y; Glickstein J; Farooqi KM Pediatr Cardiol; 2019 Aug; 40(6):1258-1265. PubMed ID: 31240370 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional printing in congenital heart disease: A systematic review. Lau I; Sun Z J Med Radiat Sci; 2018 Sep; 65(3):226-236. PubMed ID: 29453808 [TBL] [Abstract][Full Text] [Related]
15. 3D printed ventricular septal defect patch: a primer for the 2015 Radiological Society of North America (RSNA) hands-on course in 3D printing. Giannopoulos AA; Chepelev L; Sheikh A; Wang A; Dang W; Akyuz E; Hong C; Wake N; Pietila T; Dydynski PB; Mitsouras D; Rybicki FJ 3D Print Med; 2015; 1(1):3. PubMed ID: 30050972 [TBL] [Abstract][Full Text] [Related]
16. Feasibility and Validity of Printing 3D Heart Models from Rotational Angiography. Parimi M; Buelter J; Thanugundla V; Condoor S; Parkar N; Danon S; King W Pediatr Cardiol; 2018 Apr; 39(4):653-658. PubMed ID: 29305642 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional printing enhances preparation for repair of double outlet right ventricular surgery. Zhao L; Zhou S; Fan T; Li B; Liang W; Dong H J Card Surg; 2018 Jan; 33(1):24-27. PubMed ID: 29409167 [TBL] [Abstract][Full Text] [Related]
18. Patient-specific three-dimensional printing for pre-surgical planning in hepatocellular carcinoma treatment. Perica E; Sun Z Quant Imaging Med Surg; 2017 Dec; 7(6):668-677. PubMed ID: 29312871 [TBL] [Abstract][Full Text] [Related]
19. Accuracy of 3D Printed Models Created by Two Technologies of Printers with Different Designs of Model Base. Rungrojwittayakul O; Kan JY; Shiozaki K; Swamidass RS; Goodacre BJ; Goodacre CJ; Lozada JL J Prosthodont; 2020 Feb; 29(2):124-128. PubMed ID: 31498957 [TBL] [Abstract][Full Text] [Related]
20. Clinical Applications of Mixed Reality and 3D Printing in Congenital Heart Disease. Lau I; Gupta A; Ihdayhid A; Sun Z Biomolecules; 2022 Oct; 12(11):. PubMed ID: 36358899 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]