These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 33673339)

  • 1. Impact of Operating Time on Selected Tribological Properties of the Friction Material in the Brake Pads of Passenger Cars.
    Borawski A
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33673339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of the Influence of the Copper Component's Shape on the Properties of the Friction Material Used in Brakes-Part One, Tribological Properties.
    Borawski A
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing Passenger Car Brake Pad Exploitation Time's Impact on the Values of the Coefficient of Friction and Abrasive Wear Rate Using a Pin-on-Disc Method.
    Borawski A
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of braking conditions on nanoparticle emissions from passenger car friction brakes.
    Vojtíšek-Lom M; Vaculík M; Pechout M; Hopan F; Arul Raj AF; Penumarti S; Horák JS; Popovicheva O; Ondráček J; Doušová B
    Sci Total Environ; 2021 Sep; 788():147779. PubMed ID: 34034186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tribological Aspects Concerning the Study of Overhead Crane Brakes.
    Ungureanu M; Medan N; Ungureanu NS; Pop N; Nadolny K
    Materials (Basel); 2022 Sep; 15(19):. PubMed ID: 36233882
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory Tests on the Possibility of Using Flax Fibers as a Plant-Origin Reinforcement Component in Composite Friction Materials for Vehicle Braking Systems.
    Borawski A; Szpica D; Mieczkowski G
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation and Modelling of the Weight Wear of Friction Pads of a Railway Disc Brake.
    Sawczuk W; Merkisz-Guranowska A; Ulbrich D; Kowalczyk J; Cañás AR
    Materials (Basel); 2022 Sep; 15(18):. PubMed ID: 36143624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tribological Behavior of Friction Materials of a Disk-Brake Pad Braking System Affected by Structural Changes-A Review.
    Ilie F; Cristescu AC
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888213
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Effect of a Variable Disc Pad Friction Coefficient for the Mechanical Brake System of a Railway Vehicle.
    Lee NJ; Kang CG
    PLoS One; 2015; 10(8):e0135459. PubMed ID: 26267883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling the Average and Instantaneous Friction Coefficient of a Disc Brake on the Basis of Bench Tests.
    Sawczuk W; Cañás AMR; Ulbrich D; Kowalczyk J
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34443286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Contact Plateaus Characteristics Formed on the Surface of Brake Friction Materials in Braking Performance through Experimental Tests.
    Machado Pinto RL; Horta Gutiérrez JC; Pereira RBD; de Faria PE; Rubio JCC
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Initial Selection of Disc Brake Pads Material based on the Temperature Mode.
    Yevtushenko AA; Grzes P
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32054120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Taguchi Grey Relational Analysis for Multi-Response Optimization of Wear in Co-Continuous Composite.
    Achuthamenon Sylajakumari P; Ramakrishnasamy R; Palaniappan G
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30223617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Influence of the Geometry of Movement during the Friction Process on the Change in the Tribological Properties of 30CrNiMo8 Steel in Contact with a G40 Steel Ball.
    Kohutiar M; Krbata M; Escherova J; Eckert M; Mikus P; Jus M; Polášek M; Janík R; Dubec A
    Materials (Basel); 2023 Dec; 17(1):. PubMed ID: 38203981
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Effect of Thermocycling on Surface Layer Properties of Light Cured Polymer Matrix Ceramic Composites (PMCCs) Used in Sliding Friction Pair.
    Pieniak D; Walczak A; Niewczas AM; Przystupa K
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31470526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Wear of Disc Brake Friction Linings and the Variability of the Friction Coefficient on the Basis of Vibroacoustic Signals.
    Sawczuk W; Ulbrich D; Kowalczyk J; Merkisz-Guranowska A
    Sensors (Basel); 2021 Sep; 21(17):. PubMed ID: 34502831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of cast-iron disc thickness on the reliability of tribological data from pin-on-disc test: Case study of brake friction materials.
    Sellami A; Elleuch R
    Heliyon; 2024 Feb; 10(3):e25345. PubMed ID: 38356494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Applicability of lignin polymers for automobile brake pads as binder and filler materials and their performance characteristics.
    Park J; Hwang H; Kim JY; Choi JW
    Environ Technol; 2020 Jan; 41(4):488-497. PubMed ID: 30028240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microstructural Analysis and Wear Performance of Carbon-Fiber-Reinforced SiC Composite for Brake Pads.
    Byeong-Choon G; In-Sik C
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773057
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wear and Friction Analysis of Brake Pad Material Using Natural Hemp Fibers.
    Naidu M; Bhosale A; Munde Y; Salunkhe S; Hussein HMA
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.