These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33673380)

  • 1. The Effect of Edge Mode on Mass Sensing for Strained Graphene Resonators.
    Xiao X; Fan SC; Li C
    Micromachines (Basel); 2021 Feb; 12(2):. PubMed ID: 33673380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stress-Insensitive Resonant Graphene Mass Sensing via Frequency Ratio.
    Xiao X; Fan SC; Li C; Xing WW
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31324044
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Finite-size effect on the dynamic and sensing performances of graphene resonators: the role of edge stress.
    Kim CW; Dai MD; Eom K
    Beilstein J Nanotechnol; 2016; 7():685-96. PubMed ID: 27335758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optical-Thermally Excited Graphene Resonant Mass Detection: A Molecular Dynamics Analysis.
    Xiao X; Fan SC; Li C; Liu YJ
    Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonlinear vibration behavior of graphene resonators and their applications in sensitive mass detection.
    Dai MD; Kim CW; Eom K
    Nanoscale Res Lett; 2012 Sep; 7(1):499. PubMed ID: 22947221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced Pressure Response of Edge-Deposited Graphene Nanomechanical Resonators.
    Wan Z; Li C; Wu Z; Liu Y; Liu R; Zhou W; Wang Q
    ACS Appl Mater Interfaces; 2024 Jul; 16(29):38792-38798. PubMed ID: 38980283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid Shape Memory Alloy-Based Nanomechanical Resonators for Ultrathin Film Elastic Properties Determination and Heavy Mass Spectrometry.
    Stachiv I; Gan L
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31683696
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular Dynamics Analysis of Graphene Nanoelectromechanical Resonators Based on Vacancy Defects.
    Li W; Tian W
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A molecular dynamics simulation on the atomic mass sensor made of monolayer diamond.
    Zhao D; Wang J; Hao P; Yin Y; Liu J
    Nanotechnology; 2021 Aug; 32(47):. PubMed ID: 34384062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of resonance frequencies between normal and tangential vibration modes of graphene-nanoribbon-resonators.
    Kwon OK; Hwang HJ; Park J
    J Nanosci Nanotechnol; 2013 Dec; 13(12):8095-100. PubMed ID: 24266198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phonon lasing with an atomic thin membrane resonator at room temperature.
    Li WJ; Cheng ZD; Kang LZ; Zhang RM; Fan BY; Zhou Q; Wang Y; Song HZ; Arutyunov KY; Niu XB; Deng GW
    Opt Express; 2021 May; 29(11):16241-16248. PubMed ID: 34154191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonance-mode effect on microcantilever mass-sensing performance in air.
    Xia X; Li X
    Rev Sci Instrum; 2008 Jul; 79(7):074301. PubMed ID: 18681721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Opto-thermally Excited Fabry-Perot Resonance Frequency Behaviors of Clamped Circular Graphene Membrane.
    Shi FT; Fan SC; Li C; Li ZA
    Nanomaterials (Basel); 2019 Apr; 9(4):. PubMed ID: 30959952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Review on Graphene-Based Nano-Electromechanical Resonators: Fabrication, Performance, and Applications.
    Xiao Y; Luo F; Zhang Y; Hu F; Zhu M; Qin S
    Micromachines (Basel); 2022 Jan; 13(2):. PubMed ID: 35208343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Research on Fabrication of Phononic Crystal Soft-Supported Graphene Resonator.
    Zheng X; Liu Y; Zhen J; Qiu J; Liu G
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38251095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and Fabrication of Capacitive Silicon Nanomechanical Resonators with Selective Vibration of a High-Order Mode.
    Toan NV; Shimazaki T; Inomata N; Song Y; Ono T
    Micromachines (Basel); 2017 Oct; 8(10):. PubMed ID: 30400502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-sensitivity fiber optic graphene resonant accelerometer.
    Liu Y; Li C; Li J; Wan Z; Fan S
    Opt Lett; 2024 Apr; 49(7):1790-1793. PubMed ID: 38560864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High precision particle mass sensing using microchannel resonators in the second vibration mode.
    Lee J; Bryan AK; Manalis SR
    Rev Sci Instrum; 2011 Feb; 82(2):023704. PubMed ID: 21361598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strain-Modulated Dissipation in Two-Dimensional Molybdenum Disulfide Nanoelectromechanical Resonators.
    Zhang P; Jia Y; Xie M; Liu Z; Shen S; Wei J; Yang R
    ACS Nano; 2022 Feb; 16(2):2261-2270. PubMed ID: 35107966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical mode localization sensing based on fiber-coupled ring resonators.
    Wang S; Pi H; Feng Y; Yan J
    Opt Express; 2023 Jun; 31(13):21834-21844. PubMed ID: 37381271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.