These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 33673491)
1. The Potential Effect of β-Ionone and β-Damascenone on Sensory Perception of Pinot Noir Wine Aroma. Tomasino E; Bolman S Molecules; 2021 Feb; 26(5):. PubMed ID: 33673491 [TBL] [Abstract][Full Text] [Related]
2. Which impact for beta-damascenone on red wines aroma? Pineau B; Barbe JC; Van Leeuwen C; Dubourdieu D J Agric Food Chem; 2007 May; 55(10):4103-8. PubMed ID: 17447790 [TBL] [Abstract][Full Text] [Related]
3. A review on the aroma composition of Longo R; Carew A; Sawyer S; Kemp B; Kerslake F Crit Rev Food Sci Nutr; 2021; 61(10):1589-1604. PubMed ID: 32401040 [No Abstract] [Full Text] [Related]
4. Key norisoprenoid compounds in wines from early-harvested grapes in view of climate change. Asproudi A; Ferrandino A; Bonello F; Vaudano E; Pollon M; Petrozziello M Food Chem; 2018 Dec; 268():143-152. PubMed ID: 30064741 [TBL] [Abstract][Full Text] [Related]
5. Instrumental and sensory approaches for the characterization of compounds responsible for wine aroma. Barbe JC; Pineau B; Ferreira AC Chem Biodivers; 2008 Jun; 5(6):1170-83. PubMed ID: 18618403 [TBL] [Abstract][Full Text] [Related]
6. Aroma Potential in Early- and Late-Maturity Pinot noir Grapes Evaluated by Aroma Extract Dilution Analysis. Yuan F; Qian MC J Agric Food Chem; 2016 Jan; 64(2):443-50. PubMed ID: 26698292 [TBL] [Abstract][Full Text] [Related]
7. Decoding the Identity of Pinot Gris and Pinot Noir Wines: A Comprehensive Chemometric Fusion of Sensory (from Dual Panel) and Chemical Analysis. Darnal A; Poggesi S; Longo E; Arbore A; Boselli E Foods; 2023 Dec; 13(1):. PubMed ID: 38201046 [TBL] [Abstract][Full Text] [Related]
8. Revealing the Usefulness of Aroma Networks to Explain Wine Aroma Properties: A Case Study of Portuguese Wines. Petronilho S; Lopez R; Ferreira V; Coimbra MA; Rocha SM Molecules; 2020 Jan; 25(2):. PubMed ID: 31936556 [TBL] [Abstract][Full Text] [Related]
9. Pinot noir wine volatile and anthocyanin composition under different levels of vine fruit zone leaf removal. Feng H; Skinkis PA; Qian MC Food Chem; 2017 Jan; 214():736-744. PubMed ID: 27507532 [TBL] [Abstract][Full Text] [Related]
10. Effect of Cluster Thinning Vitis vinifera cv. Pinot Noir on Wine Volatile and Phenolic Composition. Rutan TE; Herbst-Johnstone M; Kilmartin PA J Agric Food Chem; 2018 Sep; 66(38):10053-10066. PubMed ID: 30175910 [TBL] [Abstract][Full Text] [Related]
11. Effect of postharvest dehydration on the composition of pinot noir grapes (Vitis vinifera L.) and wine. Moreno JJ; Cerpa-Calderón F; Cohen SD; Fang Y; Qian M; Kennedy JA Food Chem; 2008 Aug; 109(4):755-62. PubMed ID: 26049988 [TBL] [Abstract][Full Text] [Related]
12. Determination of volatile compounds in Grenache wines in relation with different terroirs in the Rhone Valley. Sabon I; De Revel G; Kotseridis Y; Bertrand A J Agric Food Chem; 2002 Oct; 50(22):6341-5. PubMed ID: 12381114 [TBL] [Abstract][Full Text] [Related]
13. Metabolomics Approach to Assess the Relative Contributions of the Volatile and Non-volatile Composition to Expert Quality Ratings of Pinot Noir Wine Quality. Sherman E; Coe M; Grose C; Martin D; Greenwood DR J Agric Food Chem; 2020 Nov; 68(47):13380-13396. PubMed ID: 32893630 [TBL] [Abstract][Full Text] [Related]
14. Odor Perception Interactions between Free Monoterpene Isomers and Wine Composition of Pinot Gris Wines. Tomasino E; Song M; Fuentes C J Agric Food Chem; 2020 Mar; 68(10):3220-3227. PubMed ID: 32066240 [TBL] [Abstract][Full Text] [Related]
15. Quantitative determination of α-ionone, β-ionone, and β-damascenone and enantiodifferentiation of α-ionone in wine for authenticity control using multidimensional gas chromatography with tandem mass spectrometric detection. Langen J; Wegmann-Herr P; Schmarr HG Anal Bioanal Chem; 2016 Sep; 408(23):6483-96. PubMed ID: 27417694 [TBL] [Abstract][Full Text] [Related]
16. Development of C13-norisoprenoids, carotenoids and other volatile compounds in Vitis vinifera L. Cv. Pinot noir grapes. Yuan F; Qian MC Food Chem; 2016 Feb; 192():633-41. PubMed ID: 26304393 [TBL] [Abstract][Full Text] [Related]
17. Red Wine Dryness Perception Related to Physicochemistry. Watrelot AA; Heymann H; Waterhouse AL J Agric Food Chem; 2020 Mar; 68(10):2964-2972. PubMed ID: 30983339 [TBL] [Abstract][Full Text] [Related]
18. Inter-regional survey of the New Zealand Pinot noir fermentative sulfur compounds profile. Parish-Virtue K; Pilkington LI; Martin D; Wood J; Fedrizzi B J Sci Food Agric; 2021 Feb; 101(3):947-951. PubMed ID: 32767381 [TBL] [Abstract][Full Text] [Related]
19. Changes in physico-chemical and volatile aroma compound composition of Gewürztraminer wine as a result of late and ice harvest. Lukić I; Radeka S; Grozaj N; Staver M; Peršurić Đ Food Chem; 2016 Apr; 196():1048-57. PubMed ID: 26593588 [TBL] [Abstract][Full Text] [Related]
20. Quality and aromatic sensory descriptors (mainly fresh and dry fruit character) of Spanish red wines can be predicted from their aroma-active chemical composition. San-Juan F; Ferreira V; Cacho J; Escudero A J Agric Food Chem; 2011 Jul; 59(14):7916-24. PubMed ID: 21627324 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]