BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 3367366)

  • 1. Thiol-dependent K:Cl transport in sheep red cells: VIII. Activation through metabolically and chemically reversible oxidation by diamide.
    Lauf PK
    J Membr Biol; 1988; 101(2):179-88. PubMed ID: 3367366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetic comparison of ouabain-resistant K:Cl fluxes (K:Cl [Co]-transport) stimulated in sheep erythrocytes by membrane thiol oxidation and alkylation.
    Lauf PK
    Mol Cell Biochem; 1988; 82(1-2):97-106. PubMed ID: 3185522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Incorporation of 3H-N-ethylmaleimide into sheep red cell membrane thiol groups following protection by diamide-induced oxidation.
    Lauf PK
    Mol Cell Biochem; 1992 Sep; 114(1-2):13-20. PubMed ID: 1461256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence for inhibitory SH groups in the thiol activated K:Cl cotransporter of low K sheep red blood cells.
    Ryu KH; Lauf PK
    Mol Cell Biochem; 1990 Dec; 99(2):135-40. PubMed ID: 2287344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thiol-dependent passive K/Cl transport in sheep red cells: III. Differential reactivity of membrane SH groups with N-ethylmaleimide and iodoacetamide.
    Bauer J; Lauf PK
    J Membr Biol; 1983; 73(3):257-61. PubMed ID: 6864778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of nitrite, a nitric oxide derivative, in K-Cl cotransport activation of low-potassium sheep red blood cells.
    Adragna NC; Lauf PK
    J Membr Biol; 1998 Dec; 166(3):157-67. PubMed ID: 9843589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Swelling, NEM, and A23187 activate Cl(-)-dependent K+ transport in high-K+ sheep red cells.
    Fujise H; Lauf PK
    Am J Physiol; 1987 Feb; 252(2 Pt 1):C197-204. PubMed ID: 3030120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GSH depletion, K-Cl cotransport, and regulatory volume decrease in high-K/high-GSH dog red blood cells.
    Fujise H; Higa K; Kanemaru T; Fukuda M; Adragna NC; Lauf PK
    Am J Physiol Cell Physiol; 2001 Dec; 281(6):C2003-9. PubMed ID: 11698259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thiol-dependent passive K/Cl transport in sheep red cells: VII. Volume-independent freezing by iodoacetamide, and sulfhydryl group heterogeneity.
    Lauf PK
    J Membr Biol; 1987; 98(3):237-46. PubMed ID: 3681954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thiol-dependent passive K/Cl transport in sheep red cells: II. Loss of Cl- and N-ethylmaleimide sensitivity in maturing high K+ cells.
    Lauf PK
    J Membr Biol; 1983; 73(3):247-56. PubMed ID: 6864777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thiol-dependent passive K/Cl transport in sheep red cells: I. Dependence on chloride and external ions.
    Lauf PK
    J Membr Biol; 1983; 73(3):237-46. PubMed ID: 6864776
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thiol-dependent passive K: Cl transport in sheep red blood cells: X. A hydroxylamine-oxidation induced K: Cl flux blocked by diethylpyrocarbonate.
    Lauf PK
    J Membr Biol; 1990 Nov; 118(2):153-9. PubMed ID: 2266546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative activation of K-Cl cotransport by diamide in erythrocytes from humans with red cell disorders, and from several other mammalian species.
    Adragna NC; Lauf PK
    J Membr Biol; 1997 Feb; 155(3):207-17. PubMed ID: 9050444
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thiol-dependent passive K: Cl transport in sheep red blood cells: IX. Modulation by pH in the presence and absence of DIDS and the effect of NEM.
    Zade-Oppen AM; Lauf PK
    J Membr Biol; 1990 Nov; 118(2):143-51. PubMed ID: 2266545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thiol-dependent passive K+Cl- transport in sheep red blood cells: VI. Functional heterogeneity and immunologic identity with volume-stimulated K+(Rb+) fluxes.
    Lauf PK
    J Membr Biol; 1984; 82(2):167-78. PubMed ID: 6512850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A chemically unmasked, chloride dependent K+ transport in low K+ sheep red cells: genetic and evolutionary aspects.
    Lauf PK
    Prog Clin Biol Res; 1981; 56():13-34. PubMed ID: 7330007
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium-chloride cotransport in resealed human red cell ghosts.
    Dunham PB; Logue PJ
    Am J Physiol; 1986 Apr; 250(4 Pt 1):C578-83. PubMed ID: 3963171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of N-ethylmaleimide on ouabain-insensitive cation fluxes in human red cell ghosts.
    Smith DK; Lauf PK
    Biochim Biophys Acta; 1985 Aug; 818(2):251-9. PubMed ID: 4027248
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of glutathione in renal cortical tissue. Effects of diamide on Na+ and GSSG levels, amino acid transport and Na+-K+-ATPase activity.
    Pillon DJ; Moree L; Rocha H; Pashley DH; Mendicino J; Leibach FH
    Mol Cell Biochem; 1977 Dec; 18(2-3):109-15. PubMed ID: 146823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efflux of magnesium and potassium ions from liver mitochondria induced by inorganic phosphate and by diamide.
    Siliprandi D; Toninello A; Zoccarato F; Rugolo M; Siliprandi N
    J Bioenerg Biomembr; 1978 Apr; 10(1-2):1-11. PubMed ID: 95507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.