These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 33673825)

  • 1. Bmi-1 alleviates adventitial fibroblast senescence by eliminating ROS in pulmonary hypertension.
    Li K; Li Y; Yu Y; Ding J; Huang H; Chu C; Hu L; Yu Y; Cao Y; Xu P; Fulton D; Chen F
    BMC Pulm Med; 2021 Mar; 21(1):80. PubMed ID: 33673825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling.
    Barman SA; Chen F; Su Y; Dimitropoulou C; Wang Y; Catravas JD; Han W; Orfi L; Szantai-Kis C; Keri G; Szabadkai I; Barabutis N; Rafikova O; Rafikov R; Black SM; Jonigk D; Giannis A; Asmis R; Stepp DW; Ramesh G; Fulton DJ
    Arterioscler Thromb Vasc Biol; 2014 Aug; 34(8):1704-15. PubMed ID: 24947524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adventitial Fibroblast Nox4 Expression and ROS Signaling in Pulmonary Arterial Hypertension.
    Barman SA; Fulton D
    Adv Exp Med Biol; 2017; 967():1-11. PubMed ID: 29047077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TRPV4 channel mediates adventitial fibroblast activation and adventitial remodeling in pulmonary hypertension.
    Cussac LA; Cardouat G; Tiruchellvam Pillai N; Campagnac M; Robillard P; Montillaud A; Guibert C; Gailly P; Marthan R; Quignard JF; Savineau JP; Ducret T
    Am J Physiol Lung Cell Mol Physiol; 2020 Jan; 318(1):L135-L146. PubMed ID: 31693393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium Channel Subfamily K Member 3 (KCNK3) Contributes to the Development of Pulmonary Arterial Hypertension.
    Antigny F; Hautefort A; Meloche J; Belacel-Ouari M; Manoury B; Rucker-Martin C; Péchoux C; Potus F; Nadeau V; Tremblay E; Ruffenach G; Bourgeois A; Dorfmüller P; Breuils-Bonnet S; Fadel E; Ranchoux B; Jourdon P; Girerd B; Montani D; Provencher S; Bonnet S; Simonneau G; Humbert M; Perros F
    Circulation; 2016 Apr; 133(14):1371-85. PubMed ID: 26912814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR-29a-3p attenuates hypoxic pulmonary hypertension by inhibiting pulmonary adventitial fibroblast activation.
    Luo Y; Dong HY; Zhang B; Feng Z; Liu Y; Gao YQ; Dong MQ; Li ZC
    Hypertension; 2015 Feb; 65(2):414-20. PubMed ID: 25421979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PBI-4050 reduces pulmonary hypertension, lung fibrosis, and right ventricular dysfunction in heart failure.
    Nguyen QT; Nsaibia MJ; Sirois MG; Calderone A; Tardif JC; Fen Shi Y; Ruiz M; Daneault C; Gagnon L; Grouix B; Laurin P; Dupuis J
    Cardiovasc Res; 2020 Jan; 116(1):171-182. PubMed ID: 30753422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lysyl oxidases play a causal role in vascular remodeling in clinical and experimental pulmonary arterial hypertension.
    Nave AH; Mižíková I; Niess G; Steenbock H; Reichenberger F; Talavera ML; Veit F; Herold S; Mayer K; Vadász I; Weissmann N; Seeger W; Brinckmann J; Morty RE
    Arterioscler Thromb Vasc Biol; 2014 Jul; 34(7):1446-58. PubMed ID: 24833797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hypoxia induces unique proliferative response in adventitial fibroblasts by activating PDGFβ receptor-JNK1 signalling.
    Panzhinskiy E; Zawada WM; Stenmark KR; Das M
    Cardiovasc Res; 2012 Aug; 95(3):356-65. PubMed ID: 22735370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of asymmetric dimethylarginine and Rho kinase in the vascular remodeling in monocrotaline-induced pulmonary hypertension.
    Li XH; Peng J; Tan N; Wu WH; Li TT; Shi RZ; Li YJ
    Vascul Pharmacol; 2010; 53(5-6):223-9. PubMed ID: 20840872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TGF-β1/IL-11/MEK/ERK signaling mediates senescence-associated pulmonary fibrosis in a stress-induced premature senescence model of Bmi-1 deficiency.
    Chen H; Chen H; Liang J; Gu X; Zhou J; Xie C; Lv X; Wang R; Li Q; Mao Z; Sun H; Zuo G; Miao D; Jin J
    Exp Mol Med; 2020 Jan; 52(1):130-151. PubMed ID: 31959867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eliminating Senescent Cells Can Promote Pulmonary Hypertension Development and Progression.
    Born E; Lipskaia L; Breau M; Houssaini A; Beaulieu D; Marcos E; Pierre R; Do Cruzeiro M; Lefevre M; Derumeaux G; Bulavin DV; Delcroix M; Quarck R; Reen V; Gil J; Bernard D; Flaman JM; Adnot S; Abid S
    Circulation; 2023 Feb; 147(8):650-666. PubMed ID: 36515093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MicroRNA-424(322) as a new marker of disease progression in pulmonary arterial hypertension and its role in right ventricular hypertrophy by targeting SMURF1.
    Baptista R; Marques C; Catarino S; Enguita FJ; Costa MC; Matafome P; Zuzarte M; Castro G; Reis A; Monteiro P; Pêgo M; Pereira P; Girão H
    Cardiovasc Res; 2018 Jan; 114(1):53-64. PubMed ID: 29016730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elk-1-mediated 15-lipoxygenase expression is required for hypoxia-induced pulmonary vascular adventitial fibroblast dynamics.
    Li Y; Zhang L; Wang X; Chen M; Liu Y; Xing Y; Wang X; Gao S; Zhu D
    Acta Physiol (Oxf); 2016 Dec; 218(4):276-289. PubMed ID: 27174674
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative stress contributes to pulmonary hypertension in the transgenic (mRen2)27 rat.
    DeMarco VG; Habibi J; Whaley-Connell AT; Schneider RI; Heller RL; Bosanquet JP; Hayden MR; Delcour K; Cooper SA; Andresen BT; Sowers JR; Dellsperger KC
    Am J Physiol Heart Circ Physiol; 2008 Jun; 294(6):H2659-68. PubMed ID: 18424632
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidative stress augments pulmonary hypertension in chronically hypoxic mice overexpressing the oxidized LDL receptor.
    Ogura S; Shimosawa T; Mu S; Sonobe T; Kawakami-Mori F; Wang H; Uetake Y; Yoshida K; Yatomi Y; Shirai M; Fujita T
    Am J Physiol Heart Circ Physiol; 2013 Jul; 305(2):H155-62. PubMed ID: 23686713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selenoprotein P Promotes the Development of Pulmonary Arterial Hypertension: Possible Novel Therapeutic Target.
    Kikuchi N; Satoh K; Kurosawa R; Yaoita N; Elias-Al-Mamun M; Siddique MAH; Omura J; Satoh T; Nogi M; Sunamura S; Miyata S; Saito Y; Hoshikawa Y; Okada Y; Shimokawa H
    Circulation; 2018 Aug; 138(6):600-623. PubMed ID: 29636330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycyrrhizin, inhibitor of high mobility group box-1, attenuates monocrotaline-induced pulmonary hypertension and vascular remodeling in rats.
    Yang PS; Kim DH; Lee YJ; Lee SE; Kang WJ; Chang HJ; Shin JS
    Respir Res; 2014 Nov; 15():148. PubMed ID: 25420924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of Shp2 ameliorates monocrotaline-induced pulmonary arterial hypertension in rats.
    Cheng Y; Yu M; Xu J; He M; Wang H; Kong H; Xie W
    BMC Pulm Med; 2018 Aug; 18(1):130. PubMed ID: 30086741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neutralization of CXCL12 attenuates established pulmonary hypertension in rats.
    Bordenave J; Thuillet R; Tu L; Phan C; Cumont A; Marsol C; Huertas A; Savale L; Hibert M; Galzi JL; Bonnet D; Humbert M; Frossard N; Guignabert C
    Cardiovasc Res; 2020 Mar; 116(3):686-697. PubMed ID: 31173066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.