BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 33674003)

  • 1. Accumulation and cross-linkage of β-1,3/1,6-glucan lead to loss of basal stipe cell wall extensibility in mushroom Coprinopsis cinerea.
    Li M; Bi J; Bai Y; Kang L; Duan B; Liu Z; Yuan S
    Carbohydr Polym; 2021 May; 259():117743. PubMed ID: 33674003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitinases Play a Key Role in Stipe Cell Wall Extension in the Mushroom
    Zhou J; Kang L; Liu C; Niu X; Wang X; Liu H; Zhang W; Liu Z; Latgé JP; Yuan S
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucanase-Induced Stipe Wall Extension Shows Distinct Differences from Chitinase-Induced Stipe Wall Extension of Coprinopsis cinerea.
    Kang L; Zhou J; Wang R; Zhang X; Liu C; Liu Z; Yuan S
    Appl Environ Microbiol; 2019 Nov; 85(21):. PubMed ID: 31444203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel endo-β-1,6-glucanase from the mushroom Coprinopsis cinerea and its application in studying of cross-linking of β-1,6-glucan and the wall extensibility in stipe cell walls.
    Liu X; Wang R; Bi J; Kang L; Zhou J; Duan B; Liu Z; Yuan S
    Int J Biol Macromol; 2020 Oct; 160():612-622. PubMed ID: 32479944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of β-glucan-degrading enzymes from Coprinopsis cinerea for their capacities to induce stipe cell wall extension.
    Kang L; Zhang X; Liu X; Wang R; Liu C; Zhou J; Liu Z; Yuan S
    Int J Biol Macromol; 2020 Jun; 152():516-524. PubMed ID: 32112847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stipe cell wall architecture varies with the stipe elongation of the mushroom Coprinopsis cinerea.
    Niu X; Liu Z; Zhou Y; Wang J; Zhang W; Yuan S
    Fungal Biol; 2015 Oct; 119(10):946-956. PubMed ID: 26399189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Purification, characterization and function analysis of an extracellular β-glucosidase from elongating stipe cell walls in Coprinopsis cinerea.
    Zhang W; Kang L; Yang M; Zhou Y; Wang J; Liu Z; Yuan S
    FEMS Microbiol Lett; 2016 May; 363(9):. PubMed ID: 27030727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Modes of Action of ChiIII, a Chitinase from Mushroom Coprinopsis cinerea, Shift with Changes in the Length of GlcNAc Oligomers.
    Niu X; Liu CC; Xiong YJ; Yang MM; Ma F; Liu ZH; Yuan S
    J Agric Food Chem; 2016 Sep; 64(37):6958-68. PubMed ID: 27573573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification, characterization and physiological significance of a chitinase from the pilei of Coprinopsis cinerea fruiting bodies.
    Zhou Y; Kang L; Niu X; Wang J; Liu Z; Yuan S
    FEMS Microbiol Lett; 2016 Jun; 363(12):. PubMed ID: 27190145
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification, characterization and synergism in autolysis of a group of 1,3-β-glucan hydrolases from the pilei of Coprinopsis cinerea fruiting bodies.
    Zhou Y; Zhang W; Liu Z; Wang J; Yuan S
    Microbiology (Reading); 2015 Oct; 161(10):1978-1989. PubMed ID: 26199012
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous Expression and Characterization of a Novel Chitinase (ChiEn1) from Coprinopsis cinerea and its Synergism in the Degradation of Chitin.
    Niu X; Zhou JS; Wang YX; Liu CC; Liu ZH; Yuan S
    J Agric Food Chem; 2017 Aug; 65(32):6943-6956. PubMed ID: 28721730
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of stipe elongation of the mushroom Coprinopsis cinerea.
    Zhang W; Wu X; Zhou Y; Liu Z; Zhang W; Niu X; Zhao Y; Pei S; Zhao Y; Yuan S
    Microbiology (Reading); 2014 Sep; 160(Pt 9):1893-1902. PubMed ID: 24996826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ChiE1 from Coprinopsis cinerea is Characterized as a Processive Exochitinase and Revealed to Have a Significant Synergistic Action with Endochitinase ChiIII on Chitin Degradation.
    Zhou J; Chen L; Kang L; Liu Z; Bai Y; Yang Y; Yuan S
    J Agric Food Chem; 2018 Dec; 66(48):12773-12782. PubMed ID: 30404442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gene cloning, expression and characterization of an exo-chitinase with high β-glucanase activity from Aeromonas veronii B565.
    Huo F; Ran C; Yang Y; Hu J; Zhou Z
    Wei Sheng Wu Xue Bao; 2016 May; 56(5):787-803. PubMed ID: 29727141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Altered extent of cross-linking of beta1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall beta1,3-glucan content.
    Kapteyn JC; Ram AF; Groos EM; Kollar R; Montijn RC; Van Den Ende H; Llobell A; Cabib E; Klis FM
    J Bacteriol; 1997 Oct; 179(20):6279-84. PubMed ID: 9335273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics, transcriptional patterns and possible physiological significance of glycoside hydrolase family 16 members in Coprinopsis cinerea.
    Kang L; Zhu Y; Bai Y; Yuan S
    FEMS Microbiol Lett; 2019 Apr; 366(7):. PubMed ID: 31004490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heterologous expression and characterization of a novel chitin deacetylase, CDA3, from the mushroom Coprinopsis cinerea.
    Bai Y; Wang Y; Liu X; Zhao J; Kang L; Liu Z; Yuan S
    Int J Biol Macromol; 2020 May; 150():536-545. PubMed ID: 32057882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced expression of chitinase during the autolysis of mushroom in Coprinellus congregatus.
    Lim H; Choi HT
    J Microbiol; 2009 Apr; 47(2):225-8. PubMed ID: 19412609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Architecture of the yeast cell wall. Beta(1-->6)-glucan interconnects mannoprotein, beta(1-->)3-glucan, and chitin.
    Kollár R; Reinhold BB; Petráková E; Yeh HJ; Ashwell G; Drgonová J; Kapteyn JC; Klis FM; Cabib E
    J Biol Chem; 1997 Jul; 272(28):17762-75. PubMed ID: 9211929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantification of Mushroom-Derived Soluble β-1,6-Glucan Using the Function-Modified Recombinant β-1,6-Glucanase.
    Yamanaka D; Ishibashi KI; Adachi Y; Ohno N
    Int J Med Mushrooms; 2020; 22(9):855-868. PubMed ID: 33389852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.