BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 33674136)

  • 1. Photoactivatable CaMKII: Rewiring the Brain, One Synapse at a Time.
    Gee CE; Oertner TG
    Trends Neurosci; 2021 Apr; 44(4):246-247. PubMed ID: 33674136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoactivatable CaMKII induces synaptic plasticity in single synapses.
    Shibata ACE; Ueda HH; Eto K; Onda M; Sato A; Ohba T; Nabekura J; Murakoshi H
    Nat Commun; 2021 Feb; 12(1):751. PubMed ID: 33531495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CaMKII regulates the depalmitoylation and synaptic removal of the scaffold protein AKAP79/150 to mediate structural long-term depression.
    Woolfrey KM; O'Leary H; Goodell DJ; Robertson HR; Horne EA; Coultrap SJ; Dell'Acqua ML; Bayer KU
    J Biol Chem; 2018 Feb; 293(5):1551-1567. PubMed ID: 29196604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic memory survives molecular turnover.
    Lee J; Chen X; Nicoll RA
    Proc Natl Acad Sci U S A; 2022 Oct; 119(42):e2211572119. PubMed ID: 36215504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular mechanism of hippocampal long-term potentiation - Towards multiscale understanding of learning and memory.
    Hayashi Y
    Neurosci Res; 2022 Feb; 175():3-15. PubMed ID: 34375719
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics.
    Nagasawa Y; Ueda HH; Kawabata H; Murakoshi H
    Biophys Physicobiol; 2023; 20(2):e200027. PubMed ID: 38496236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interplay of enzymatic and structural functions of CaMKII in long-term potentiation.
    Kim K; Saneyoshi T; Hosokawa T; Okamoto K; Hayashi Y
    J Neurochem; 2016 Dec; 139(6):959-972. PubMed ID: 27207106
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous Live Imaging of Multiple Endogenous Proteins Reveals a Mechanism for Alzheimer's-Related Plasticity Impairment.
    Cook SG; Goodell DJ; Restrepo S; Arnold DB; Bayer KU
    Cell Rep; 2019 Apr; 27(3):658-665.e4. PubMed ID: 30995464
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DL-3-n-butylphthalide (NBP) ameliorates cognitive deficits and CaMKII-mediated long-term potentiation impairment in the hippocampus of diabetic db/db mice.
    Gao M; Ji S; Li J; Zhang S
    Neurol Res; 2019 Nov; 41(11):1024-1033. PubMed ID: 31578943
    [No Abstract]   [Full Text] [Related]  

  • 10. Bursts of high-frequency stimulation trigger rapid delivery of pre-existing alpha-CaMKII mRNA to synapses: a mechanism in dendritic protein synthesis during long-term potentiation in adult awake rats.
    Håvik B; Røkke H; Bårdsen K; Davanger S; Bramham CR
    Eur J Neurosci; 2003 Jun; 17(12):2679-89. PubMed ID: 12823475
    [TBL] [Abstract][Full Text] [Related]  

  • 11. mRNA at synapses, synaptic plasticity, and memory consolidation.
    Steward O
    Neuron; 2002 Oct; 36(3):338-40. PubMed ID: 12408837
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CaMKII Autophosphorylation Is Necessary for Optimal Integration of Ca
    Chang JY; Parra-Bueno P; Laviv T; Szatmari EM; Lee SR; Yasuda R
    Neuron; 2017 May; 94(4):800-808.e4. PubMed ID: 28521133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ca2+/calmodulin-dependent protein kinase II and protein kinase C activities mediate extracellular glucose-regulated hippocampal synaptic efficacy.
    Moriguchi S; Oomura Y; Shioda N; Han F; Hori N; Aou S; Fukunaga K
    Mol Cell Neurosci; 2011 Jan; 46(1):101-7. PubMed ID: 20807573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Calmodulin acetylation: A modification to remember.
    Sugimoto C; Robison AJ
    J Biol Chem; 2021 Oct; 297(4):101273. PubMed ID: 34606826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate.
    Brown GP; Blitzer RD; Connor JH; Wong T; Shenolikar S; Iyengar R; Landau EM
    J Neurosci; 2000 Nov; 20(21):7880-7. PubMed ID: 11050107
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of inhibitory autophosphorylation of calcium/calmodulin-dependent kinase II (αCAMKII) in persistent (>24 h) hippocampal LTP and in LTD facilitated by novel object-place learning and recognition in mice.
    Goh JJ; Manahan-Vaughan D
    Behav Brain Res; 2015 May; 285():79-88. PubMed ID: 24480420
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity-dependent inhibitory synapse remodeling through gephyrin phosphorylation.
    Flores CE; Nikonenko I; Mendez P; Fritschy JM; Tyagarajan SK; Muller D
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):E65-72. PubMed ID: 25535349
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-Term Potentiation: From CaMKII to AMPA Receptor Trafficking.
    Herring BE; Nicoll RA
    Annu Rev Physiol; 2016; 78():351-65. PubMed ID: 26863325
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The CaMKII/GluN2B Protein Interaction Maintains Synaptic Strength.
    Barcomb K; Hell JW; Benke TA; Bayer KU
    J Biol Chem; 2016 Jul; 291(31):16082-9. PubMed ID: 27246855
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reversal of synaptic memory by Ca2+/calmodulin-dependent protein kinase II inhibitor.
    Sanhueza M; McIntyre CC; Lisman JE
    J Neurosci; 2007 May; 27(19):5190-9. PubMed ID: 17494705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.