These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 33674136)

  • 41. Activity-driven postsynaptic translocation of CaMKII.
    Merrill MA; Chen Y; Strack S; Hell JW
    Trends Pharmacol Sci; 2005 Dec; 26(12):645-53. PubMed ID: 16253351
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tetrahydroxystilbene glucoside, a plant-derived cognitive enhancer, promotes hippocampal synaptic plasticity.
    Wang T; Yang YJ; Wu PF; Wang W; Hu ZL; Long LH; Xie N; Fu H; Wang F; Chen JG
    Eur J Pharmacol; 2011 Jan; 650(1):206-14. PubMed ID: 20951128
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Decreased calcium/calmodulin-dependent protein kinase II and protein kinase C activities mediate impairment of hippocampal long-term potentiation in the olfactory bulbectomized mice.
    Moriguchi S; Han F; Nakagawasai O; Tadano T; Fukunaga K
    J Neurochem; 2006 Apr; 97(1):22-9. PubMed ID: 16515554
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition.
    Huang CS; Shi SH; Ule J; Ruggiu M; Barker LA; Darnell RB; Jan YN; Jan LY
    Cell; 2005 Oct; 123(1):105-18. PubMed ID: 16213216
    [TBL] [Abstract][Full Text] [Related]  

  • 45. CA1 long-term potentiation is diminished but present in hippocampal slices from alpha-CaMKII mutant mice.
    Hinds HL; Tonegawa S; Malinow R
    Learn Mem; 1998; 5(4-5):344-54. PubMed ID: 10454359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differential stimulus-dependent synaptic recruitment of CaMKIIα by intracellular determinants of GluN2B.
    She K; Rose JK; Craig AM
    Mol Cell Neurosci; 2012 Nov; 51(3-4):68-78. PubMed ID: 22902837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. mGluR1-mediated facilitation of long-term potentiation at inhibitory synapses on a cerebellar Purkinje neuron.
    Sugiyama Y; Kawaguchi SY; Hirano T
    Eur J Neurosci; 2008 Feb; 27(4):884-96. PubMed ID: 18279362
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Presynaptic and postsynaptic Ca(2+) and CamKII contribute to long-term potentiation at synapses between individual CA3 neurons.
    Lu FM; Hawkins RD
    Proc Natl Acad Sci U S A; 2006 Mar; 103(11):4264-9. PubMed ID: 16537519
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Priming of long-term potentiation in mouse hippocampus by corticotropin-releasing factor and acute stress: implications for hippocampus-dependent learning.
    Blank T; Nijholt I; Eckart K; Spiess J
    J Neurosci; 2002 May; 22(9):3788-94. PubMed ID: 11978854
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Age-related deficits in long-term potentiation are insensitive to hydrogen peroxide: coincidence with enhanced autophosphorylation of Ca2+/calmodulin-dependent protein kinase II.
    Watson JB; Khorasani H; Persson A; Huang KP; Huang FL; O'Dell TJ
    J Neurosci Res; 2002 Nov; 70(3):298-308. PubMed ID: 12391589
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Modelling the dynamics of CaMKII-NMDAR complex related to memory formation in synapses: the possible roles of threonine 286 autophosphorylation of CaMKII in long term potentiation.
    He Y; Kulasiri D; Samarasinghe S
    J Theor Biol; 2015 Jan; 365():403-19. PubMed ID: 25446714
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Binding of Filamentous Actin to CaMKII as Potential Regulation Mechanism of Bidirectional Synaptic Plasticity by β CaMKII in Cerebellar Purkinje Cells.
    Pinto TM; Schilstra MJ; Roque AC; Steuber V
    Sci Rep; 2020 Jun; 10(1):9019. PubMed ID: 32488204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Differential involvement of Ca
    Shetty MS; Sajikumar S
    Neurobiol Learn Mem; 2017 Feb; 138():111-120. PubMed ID: 27470093
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synapse-specific compartmentalization of signaling cascades for LTP induction in CA3 interneurons.
    Galván EJ; Pérez-Rosello T; Gómez-Lira G; Lara E; Gutiérrez R; Barrionuevo G
    Neuroscience; 2015 Apr; 290():332-45. PubMed ID: 25637803
    [TBL] [Abstract][Full Text] [Related]  

  • 55. CaMKII Phosphorylation of TARPγ-8 Is a Mediator of LTP and Learning and Memory.
    Park J; Chávez AE; Mineur YS; Morimoto-Tomita M; Lutzu S; Kim KS; Picciotto MR; Castillo PE; Tomita S
    Neuron; 2016 Oct; 92(1):75-83. PubMed ID: 27667007
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Apolipoprotein E4 impairs in vivo hippocampal long-term synaptic plasticity by reducing the phosphorylation of CaMKIIα and CREB.
    Qiao F; Gao XP; Yuan L; Cai HY; Qi JS
    J Alzheimers Dis; 2014; 41(4):1165-76. PubMed ID: 24787920
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons.
    Pettit DL; Perlman S; Malinow R
    Science; 1994 Dec; 266(5192):1881-5. PubMed ID: 7997883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Multiple cellular cascades participate in long-term potentiation and in hippocampus-dependent learning.
    Baudry M; Zhu G; Liu Y; Wang Y; Briz V; Bi X
    Brain Res; 2015 Sep; 1621():73-81. PubMed ID: 25482663
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus.
    Navakkode S; Chew KCM; Tay SJN; Lin Q; Behnisch T; Soong TW
    Sci Rep; 2017 Nov; 7(1):15571. PubMed ID: 29138490
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium/calmodulin-dependent protein kinase II contributes to activity-dependent filopodia growth and spine formation.
    Jourdain P; Fukunaga K; Muller D
    J Neurosci; 2003 Nov; 23(33):10645-9. PubMed ID: 14627649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.