BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 33674152)

  • 21. Posttranscriptional Regulation of
    Chand SN; Zarei M; Schiewer MJ; Kamath AR; Romeo C; Lal S; Cozzitorto JA; Nevler A; Scolaro L; Londin E; Jiang W; Meisner-Kober N; Pishvaian MJ; Knudsen KE; Yeo CJ; Pascal JM; Winter JM; Brody JR
    Cancer Res; 2017 Sep; 77(18):5011-5025. PubMed ID: 28687616
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rad51 Degradation: Role in Oncolytic Virus-Poly(ADP-Ribose) Polymerase Inhibitor Combination Therapy in Glioblastoma.
    Ning J; Wakimoto H; Peters C; Martuza RL; Rabkin SD
    J Natl Cancer Inst; 2017 Mar; 109(3):1-13. PubMed ID: 28376211
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PARP-1 Controls the Adipogenic Transcriptional Program by PARylating C/EBPβ and Modulating Its Transcriptional Activity.
    Luo X; Ryu KW; Kim DS; Nandu T; Medina CJ; Gupte R; Gibson BA; Soccio RE; Yu Y; Gupta RK; Kraus WL
    Mol Cell; 2017 Jan; 65(2):260-271. PubMed ID: 28107648
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Clinical PARP inhibitors allosterically induce PARP2 retention on DNA.
    Langelier MF; Lin X; Zha S; Pascal JM
    Sci Adv; 2023 Mar; 9(12):eadf7175. PubMed ID: 36961901
    [TBL] [Abstract][Full Text] [Related]  

  • 25. HMGN1 protein regulates poly(ADP-ribose) polymerase-1 (PARP-1) self-PARylation in mouse fibroblasts.
    Masaoka A; Gassman NR; Kedar PS; Prasad R; Hou EW; Horton JK; Bustin M; Wilson SH
    J Biol Chem; 2012 Aug; 287(33):27648-58. PubMed ID: 22736760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PARP inhibitor resistance: the underlying mechanisms and clinical implications.
    Li H; Liu ZY; Wu N; Chen YC; Cheng Q; Wang J
    Mol Cancer; 2020 Jun; 19(1):107. PubMed ID: 32563252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of PARP inhibitor resistance in cancer and insights into the DNA damage response.
    Francica P; Rottenberg S
    Genome Med; 2018 Dec; 10(1):101. PubMed ID: 30593284
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Therapeutic Targeting of Poly(ADP-Ribose) Polymerase-1 (PARP1) in Cancer: Current Developments, Therapeutic Strategies, and Future Opportunities.
    Rajawat J; Shukla N; Mishra DP
    Med Res Rev; 2017 Nov; 37(6):1461-1491. PubMed ID: 28510338
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studying PAR-Dependent Chromatin Remodeling to Tackle PARPi Resistance.
    Andronikou C; Rottenberg S
    Trends Mol Med; 2021 Jul; 27(7):630-642. PubMed ID: 34030964
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Inhibiting poly ADP-ribosylation increases fatty acid oxidation and protects against fatty liver disease.
    Gariani K; Ryu D; Menzies KJ; Yi HS; Stein S; Zhang H; Perino A; Lemos V; Katsyuba E; Jha P; Vijgen S; Rubbia-Brandt L; Kim YK; Kim JT; Kim KS; Shong M; Schoonjans K; Auwerx J
    J Hepatol; 2017 Jan; 66(1):132-141. PubMed ID: 27663419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Poly(ADP-Ribose) Polymerase-1 inhibition potentiates cell death and phosphorylation of DNA damage response proteins in oxidative stressed retinal cells.
    Martín-Guerrero SM; Casado P; Muñoz-Gámez JA; Carrasco MC; Navascués J; Cuadros MA; López-Giménez JF; Cutillas PR; Martín-Oliva D
    Exp Eye Res; 2019 Nov; 188():107790. PubMed ID: 31494107
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Poly(ADP-Ribose) Polymerase-1 Inhibitors Drug Discovery, Design, and Development as Anticancer Agents from Past to Present: A Mini-Review.
    AlGhamdi A; AlMubayedh H
    Mini Rev Med Chem; 2022; 22(12):1597-1606. PubMed ID: 34587882
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanistic Dissection of PARP1 Trapping and the Impact on In Vivo Tolerability and Efficacy of PARP Inhibitors.
    Hopkins TA; Shi Y; Rodriguez LE; Solomon LR; Donawho CK; DiGiammarino EL; Panchal SC; Wilsbacher JL; Gao W; Olson AM; Stolarik DF; Osterling DJ; Johnson EF; Maag D
    Mol Cancer Res; 2015 Nov; 13(11):1465-77. PubMed ID: 26217019
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DNA Damage Repair and the Emerging Role of Poly(ADP-ribose) Polymerase Inhibition in Cancer Therapeutics.
    Rabenau K; Hofstatter E
    Clin Ther; 2016 Jul; 38(7):1577-88. PubMed ID: 27368114
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Feedback-regulated poly(ADP-ribosyl)ation by PARP-1 is required for rapid response to DNA damage in living cells.
    Mortusewicz O; Amé JC; Schreiber V; Leonhardt H
    Nucleic Acids Res; 2007; 35(22):7665-75. PubMed ID: 17982172
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PARP Inhibitors as Therapeutics: Beyond Modulation of PARylation.
    Min A; Im SA
    Cancers (Basel); 2020 Feb; 12(2):. PubMed ID: 32046300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(ADP-ribose) polymerase signaling of topoisomerase 1-dependent DNA damage in carcinoma cells.
    D'Onofrio G; Tramontano F; Dorio AS; Muzi A; Maselli V; Fulgione D; Graziani G; Malanga M; Quesada P
    Biochem Pharmacol; 2011 Jan; 81(2):194-202. PubMed ID: 20875401
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Curcumin suppresses multiple DNA damage response pathways and has potency as a sensitizer to PARP inhibitor.
    Ogiwara H; Ui A; Shiotani B; Zou L; Yasui A; Kohno T
    Carcinogenesis; 2013 Nov; 34(11):2486-97. PubMed ID: 23825154
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of poly(ADP-ribose) polymerase-1 by arsenite interferes with repair of oxidative DNA damage.
    Ding W; Liu W; Cooper KL; Qin XJ; de Souza Bergo PL; Hudson LG; Liu KJ
    J Biol Chem; 2009 Mar; 284(11):6809-17. PubMed ID: 19056730
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation of a Low-Toxicity PARP Inhibitor as a Neuroprotective Agent for Parkinson's Disease.
    Puentes LN; Lengyel-Zhand Z; Reilly SW; Mach RH
    Mol Neurobiol; 2021 Aug; 58(8):3641-3652. PubMed ID: 33788167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.